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Abstract

The paper explores in detail the use of dynamic adaptation gain/learning rate (DAG) for
improving the performance of adaptive feedforward attenuation schemes. The DAG is an
ARMA (poles-zeros) filter embedded in gradient type adaptation/learning algorithms and
generalizes the various improved gradient algorithms available in the literature. After intro-
ducing the DAG algorithm in the context of adaptive feedforward attenuation schemes and
providing relationships with other algorithms, its design is developed. Strictly Positive Real
(SPR) conditions play an important role in the design of the DAG. Then the stability issues
for adaptive/learning systems using a DAG are discussed. The potential of the DAG is
then illustrated by experimental results obtained on a relevant adaptive active noise control
system.
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List of Acronyms

ANC - Active Noise Control
ARMA - Auto Regressive Moving Average
AVC - Active Vibration Control
DAG - Dynamic adaptation gain/learning rate
fs - Sampling frequency
PAA - Parameter adaptation algorithm
PR - Positive real transfer function
SPR - Strictly positive real transfer function
PSD - Power Spectral Density

1. Introduction

Many parameter adaptation algorithms (PAA) used in active noise and vibration control
(ANVC) are based on the gradient technique [1]. There are a number of algorithms resulting
either from the choice of the criterion to be minimized or from the approximation of the
gradient. Other adaptation algorithms used in ANVC result from using a stability point of
view for their development [2]. Some of these stability-based algorithms can be interpreted
as gradient type algorithms.

One of the most common features in applications is the use of a constant adaptation
gain/learning rate in order to keep, on one hand, the alertness of the algorithm in the
presence of changes in the characteristics of the disturbances (noise or vibration) to be
attenuated, and on the other hand, to have a low computational load. Stability issues not
addressed in many cases often lead to the use of very low values for the adaptation gains,
resulting in very slow adaptation transients and unsatisfactory performance. The choice of
the adaptation gain value is a major problem for applications.

Stability issues have been well understood in adaptive feedforward ANVC schemes. Ap-
propriate algorithms which guarantee the stability of the system even for high adaptation
gain values have been developed [3, 4]. These algorithms on one hand take into account the
inherent internal positive feedback occurring in adaptive feedforward attenuation schemes
and on the other hand use the “a posteriori” residual error as adaptation error (leading to
the normalization of the measured residual error). The implementation of these algorithms
requires identification of the secondary and reverse paths for design of the appropriate filters
acting on the measurements.

Once the stability issue is resolved, a significant problem remains to be addressed: How
to choose the value of the adaptation gain assuring the best compromise between the speed of
adaptation and steady state performance? More specifically, given a value of the adaptation
gain assuring good steady state performance, how can one improve the adaptation speed?
The answer to this question is one of the main objectives of this paper.

Solutions derived from the recursive least squares algorithm with forgetting factor have
been proposed ([2, 5]). However this approach leads to a significant increase in computa-
tional load ([5]). One of these solutions is the so-called “constant trace algorithm” [2, 6]
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implementing a time varying matrix adaptation gain1. Experimental results in ANVC show
a certain improvement in adaptation transients but the computational load becomes much
more important than in the case of constant adaptation gains. The signal processing com-
munity has also proposed algorithms using a time varying matrix adaptation gain as well
as different simplifications in order to try to reduce the computational load (variable step
size algorithms) [5]. The question is: does another solution for improving the adaptation
transients exist that does not lead to a significant increase in computational load?

Recently, the concept of “dynamic adaptation gain” (DAG) has been introduced in [7]
and simulation results (based on an academic example) indicate a high potentiality of this
approach. The basic idea behind DAG can be summarized as follows: the gradient (or its
approximation) is first filtered before it corrects the current estimated parameters through
the (stationary) adaptation gain. It results from [7], that a filter with 3 coefficients allows
significant improvement of the adaptation transients (the ARIMA2 algorithm in [7]). This
dynamic adaptation gain can be interpreted also as a PID (with a filtered derivative) filter
acting on the gradient2.

The objectives of this paper are:

• To investigate the potentiality of dynamic adaptation gain in adaptive feedforward
noise attenuation schemes using constant adaptation gain/learning rate.

• To provide experimental results obtained on a relevant test-bench dedicated to active
noise control (ANC).

• To provide a methodology for design of dynamic adaptation gains.

As it will be shown in the paper, “passivity” concepts will play a key role in the design of
dynamic adaptation gains.

The paper is organized as follows: the experimental set-up is described in Section 2.
Then a basic adaptive feedforward configuration using a gradient type PAA is presented
in Section 3. The dynamic adaptation gain/learning rate is introduced in the context of
adaptive feedforward compensators in Section 4. The design of the dynamic adaptation gain
is discussed in Sections 5 and 6. Experimental results obtained on the ANC test-bench
introduced in Section 2 are presented in Section 7.

2. Experimental setup

The view of the test-bench used for experiments and its detailed diagram are shown in
Fig. 1. The actual dimensions of the test-bench are given in Fig. 2.

The speaker used as the source of disturbances is labelled 1, while the control speaker
is marked 2. At the pipe’s open end, the microphone that measures the system’s output

1The trace of the matrix adaptation gain is kept constant and it is equal to the desired adaptation gain
per parameter multiplied by the number of parameters.

2The correcting term is no more only proportional to the gradient but it depends also upon the integral
of the gradient as well as upon the filtered variations of the gradient.
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Figure 1: Duct active noise control test-bench photo (top) and block diagram (bottom).

(residual noise e(t)) is denoted as 3. s(t) is the disturbance. Inside the pipe, close to the
source of the disturbances, the second microphone, labelled 4, measures the disturbance’s
image, denoted as y(t). u(t) is the control signal. The transfer function between the dis-
turbance speaker and the output microphone (1→3) is called Global Primary Path. The
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Figure 2: Duct active noise control test-bench dimension.

transfer function between microphones (4→3) is called Primary Path (D), while the trans-
fer function between the control speaker and the microphone (2→3) is denoted Secondary
Path (G). The internal coupling found between (2→4) is denoted Reverse Path (M). These
marked paths have a double differentiator behavior, since as input we have the voice coil
displacement and as output the air acoustical pressure.

In this configuration, speakers are isolated inside wood boxes filled with special foam in
order to create anechoic chambers and reduce the produced radiation noise. These boxes
have dimensions 0.15 m × 0.15 m × 0.12 m, giving a chamber volume of 2.7 L.

Speakers and microphones are connected to a target computer with Simulink Real-time®.
A second computer is used for development and operation with Matlab. The sampling
frequency is fs = 2500 Hz.

The various paths are described by models of the form3:

X(q−1) = q−dx
BX(q

−1)

AX(q−1)
= q−dx

bX1 q
−1 + ...+ bXnBX

q−nBX

1 + aX1 q
−1 + ...+ aXnAX

q−nAX
(1)

with BX = q−1B∗
X for any X ∈ {G,M,D}. Ĝ = q−dG B̂G

AG
, M̂ = q−dM B̂M

AM
, and D̂ = q−dT B̂T

AT

denote the identified (estimated) models of G, M , and D. The system’s order is defined as
(the indexes G, M , and T have been omitted): n = max(nA, nB + d).

The frequency characteristics of the identified models for the primary4, secondary and
reverse paths are shown in Fig. 3. These characteristics present multiple resonances (low

3The complex variable z−1 will be used for characterizing the system’s behavior in the frequency domain
and the delay operator q−1 will be used for describing the system’s behavior in the time domain.

4The primary path model has been exclusively used for simulation purposes.
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Figure 3: Frequency characteristics of the Primary, Secondary and Reverse paths identified models.

damped complex poles)5 and anti-resonances (low damped complex zeros). One can see that
the secondary path has a high gain between 70 to 250 Hz, which means that disturbances
can be efficiently attenuated in this region. It is also clear that the reverse path has a
significant gain on a large frequency range (up to 400 Hz) so its effect cannot be neglected.
These models have been identified experimentally using the techniques described in [8]. The
orders and the pure delays of the various identified models are given in Table 1.

It is important to note that most of the implementations of the adaptive feedforward
compensation systems are close to a co-location of the residual noise measurement and of
the secondary source used for compensation. See for example [9],[10],[11]. A ratio of 1/6
to 2/6 between the length of the secondary path and the length of the primary path is

5The lowest damping is around 0.01.
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Model nB nA d

Primary (D) 20 19 0
Secondary (G) 22 24 5
Reverse (M) 22 25 5

Table 1: Orders of the identified system paths.

used in these references. Nevertheless, there are new potential applications areas where
technological constraints will not allow a configuration to be close to a co-location. For this
reason the ratio between the length of secondary path and the length of the primary path
has been chosen slightly larger than 4/6.

The objective of the active control system is to attenuate incoming unknown broad-band
noise disturbances.

3. The basic adaptive feedforward configuration

For the purpose of this paper (comparison of various adaptation/learning algorithms),
the FIR Youla-Kučera configuration for the feedforward compensator has been selected.
This configuration has been described previously in the active vibration context [12], [4]
and in the active noise context [13, 14]. It offers the great advantage of defining a priori
the closed loop poles of the internal positive feedback loop independently of the values of
the adaptive FIR filter assuring the attenuation of the incoming disturbance. For a detailed
description of the algorithm and of the stability conditions, see for example [13]. In these
papers, a stability approach has been considered for the synthesis of the PAAs. In this
paper, the PAAs are synthesized using the “gradient rule”6 and then the stability of the
system is analyzed. This approach is necessary for the subsequent introduction of the new
algorithms which can be viewed as an improvement of the “gradient” type algorithms.

The corresponding block diagram for the adaptive feedforward noise compensation using
the FIR Youla-Kučera (FIR-YK) parametrization of the feedforward compensator is shown
in Figure 4. ŷ(t) denotes the effective output of the measurement device (microphone in
ANC) providing an image of the incoming disturbance and which will serve as input to the
adaptive feedforward filter. The output of this filter, denoted by û(t), is applied to the
actuator through an amplifier. The transfer function G (the secondary path) characterizes
the dynamics from the output of the feedforward filter to the residual noise measurement
(amplifier + actuator + dynamics of the system). The transfer function D characterizes the
primary path. The transfer function M characterizes the positive feedback path.

The adjustable filter Q̂ has the structure:

Q̂(q−1) = q̂0 + q̂1q
−1 + ...+ q̂nQ

q−nQ (2)

6In the gradient rule the correction of the parameters is done in the direction of the gradient of the
criterion to be minimized with the minus sign.
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Figure 4: Feedforward AVC with FIR-YK adaptive feedforward compensator.

and the parameters qi will be adapted in order to minimize the residual error. One defines

wT = [q0, q1, q2, . . . , qnQ
] (3)

ŵT = [q̂0, q̂1, q̂2, . . . , q̂nQ
] (4)

uT (t) = [α(t+ 1), α(t), . . . , α(t− nQ + 1)] (5)

where:
α(t+ 1) = BM û(t+ 1)− AM ŷ(t+ 1) = B∗

M ŷ(t)− AM û(t+ 1) (6)

The a priori output of the feedforward compensator is given by:

û◦(t+ 1) = −S∗
0 û(t) +R0ŷ(t+ 1) + ŵT (t)u(t) (7)

where û(t), û(t− 1), ... are the “a posteriori” outputs of the feedforward filter generated by

û(t+ 1) = −S∗
0 û(t) +R0ŷ(t+ 1) + ŵT (t+ 1)u(t) (8)

The measured input to the feedforward filter satisfies the following equation (when feed-
forward compensation is active)

ŷ(t+ 1) = d(t+ 1) +
B∗

M(q−1)

AM(q−1)
û(t). (9)

The unmeasurable value of the output of the primary path is denoted x(t). The unmea-
surable a priori output of the secondary path will be denoted ẑ◦(t+ 1).

ẑ◦(t+ 1) = ẑ(t+ 1|ŵ(t)) =
B∗

G(q
−1)

AG(q−1)
ŷ(t) (10)

The a posteriori unmeasurable value of the output of the secondary path is denoted:

ẑ(t+ 1) = ẑ(t+ 1|ŵ(t+ 1)) (11)
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The a priori adaptation error is defined as:

ν◦(t+ 1) = ν(t+ 1|ŵ(t)) = −e◦(t+ 1) = −x(t+ 1)− ẑ◦(t+ 1) (12)

where e◦(t+1) is the measured residual noise. The a posteriori adaptation error (computed)
will be given by:

ν(t+ 1) = ν(t+ 1|ŵ(t+ 1)) = −x(t+ 1)− ẑ(t+ 1). (13)

When using an estimated filter N̂ with constant parameters: ŷ◦(t) = ŷ(t), ẑ◦(t) = ẑ(t)
and ν◦(t) = ν(t).

Using the results of [12], the a posteriori residual adaptation error can be expressed as:

ν(t+ 1) = ν(t+ 1|ŵ(t+ 1)) = H(q−1)[w − ŵ(t+ 1)]Tu(t) (14)

where7

H(q−1) =
AMG

P0

; P0 = AMS0 −BMR0 (15)

Assume that we would like to minimize at each step a quadratic criterion in terms of the a
posteriori residual error

min
ŵ(t+1)

J(t+ 1) = [ν(t+ 1)]2 (16)

A solution can be provided by the gradient rule. The corresponding parameter adapta-
tion/learning algorithm (PALA) will have the form:

ŵ(t+ 1) = ŵ(t)− F ▽w J(t+ 1) = ŵ(t)− F
∂J(t+ 1)

∂ŵ(t+ 1)
(17)

where F is the matrix adaptation gain/learning rate and ▽wJ(t+1) is the partial gradient

of the criterion given in (16) with respect to ŵ(t+1) which has the expression ∂J(t+1)
∂ŵ(t+1)

. There

are two possible choices for the matrix adaptation gain/learning rate: (i) F = γI; γ > 0;
(ii) F > 0 (positive definite matrix). For the remainder of the paper we will use the option
F = γI. The term (constant) adaptation gain or learning rate is used for γ. Neglecting the
non-commutativity of the transfer operator (valid for low values of the adaptation gain),
(14) can be re-written as:

ν(t+ 1) = ν(t+ 1|ŵ(t+ 1)) = [w − ŵ(t+ 1)]TH(q−1)u(t) (18)

Using this equation, the expression of the partial gradient becomes:

▽wJ(t+ 1) = −H(q−1)u(t)ν(t+ 1) (19)

7P0 defines the poles of the internal positive closed loop formed by the feedforward compensator and the
reverse path.
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Unfortunately, H(q−1) is not known exactly and should be replaced by its estimation Ĥ(q−1)
based on the identified models of the secondary and reverse paths. Therefore the gradient
of the criterion will be computed using:

▽̂wJ(t+ 1) = L(q−1)u(t)ν(t+ 1); L(q−1) = Ĥ(q−1) (20)

One defines also the regressor vector (a filtered observation vector) as:

r(t) = L(q−1)u(t) = [αf (t+ 1), αf (t), . . . , αf (t− nQ+ 1)] (21)

where:
αf (t+ 1) = L(q−1)α(t+ 1) (22)

and the basic gradient type PALA will take the form:

ŵ(t+ 1) = ŵ(t) + γr(t)ν(t+ 1), (23)

Using R0 = 0 and S0 = 1, the poles of the internal positive closed loop will be defined by
AM (see Eq. (15)) and they will remain unchanged (see [13] for details). In this context,
the filter used in (22) will be L = Ĝ.

Defining the parameter error:

w̃(t) = ŵ(t)−w (24)

one obtains from (14) and (23):

ν(t+ 1) = −H(q−1)

Ĥ(q−1)
w̃(t+ 1)]T r(t) (25)

w̃(t+ 1) = w̃(t) + γr(t)ν(t+ 1) (26)

w̃(t+ 1)T r(t) = w̃(t)T r+ γrT (t)r(t)ν(t+ 1) (27)

Equations (25) and (27) define an equivalent feedback system shown in Fig. 5 and the
associated linear transfer operator appearing in the equivalent feedforward path is:

H ′(q−1) =
H(q−1)

L(q−1)
(28)

Using the results of [6, Theorem 3.2] one concludes that asymptotic stability will be
obtained for any values of the adaptation gain γ and any initial conditions if H ′(z−1) is a
strictly positive real (SPR) transfer function. This is a very mild condition as far as a good
experimental identification of the models is carried out.

To implement the algorithm, we need an expression of ν(t+1) as a function of ν◦(t+1).
From (18), one gets:

ν(t+ 1) = [w − ŵ(t+ 1)]T r(t)− Ĥ∗(q−1)ν(t) +H∗(q−1) [w − ŵ(t)]T r(t− 1) (29)
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Figure 5: Equivalent feedback system for the adaptive feedforward attenuation scheme.

where
H(q−1) = 1 + q−1H∗(q−1); ˆH(q−1) = (1 + q−1Ĥ∗(q−1) (30)

The a priori adaptation error obeys the equation

ν◦(t+ 1) = [w − ŵ(t)]T r(t)−H∗(q−1) [w − ŵ(t)]T r(t− 1)− Ĥ∗(q−1)ν(t) (31)

The a posteriori adaptation/learning error can then be written as:

ν(t+ 1) = ν◦(t+ 1)− [ŵ(t+ 1)− ŵ(t)]T r(t)

= ν◦(t+ 1)− γr(t)T r(t)ν(t+ 1) (32)

which leads to:

ν(t+ 1) =
ν◦(t+ 1)

1 + γrT (t)r(t)
(33)

For the purpose of this paper, it is convenient to express the adaptation algorithm as:

r(t) = uf (t) = L(q−1)u(t) (34)

ν(t+ 1) =
ν◦(t+ 1)

1 + γrT (t)r(t)
(35)

ŵ(t+ 1) = ŵ(t) + γr(t)ν(t+ 1) (36)

(37)

where ν◦(t + 1) is given in (12). The asymptotic stability condition for any values of the
adaptation gain γ and any initial conditions ŵ(0), ν◦(0) is that H ′(z−1) given in (28) should
be strictly positive real (SPR).

4. An adaptation algorithm using a dynamic adaptation gain/learning rate

The new adaptation algorithm which will be discussed in this section will have the form8

ŵ(t+ 1) = ŵ(t) + γ
C(q−1)

D′(q−1)
[r(t)ν(t+ 1)] (38)

8It can be interpreted as a dynamic gradient rule.
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where C(q−1)
D′(q−1)

is termed the “dynamic adaptation gain/learning rate” (DAG). It is in fact a
MIMO diagonal transfer operator having identical terms. All the diagonal terms are of the
form:

H ii
DAG(q

−1) =
C(q−1)

D′(q−1)
=

1 + c1q
−1 + c2q

−2 + ..+ cnC
q−nC

1− d′1q
−1 − d′2q

−2 − ..d′nD′q
−n′

D

(39)

The effective implementation of the algorithm given in (38) leads to:

ŵ(t+ 1) = d1ŵ(t) + d2ŵ(t− 1) + . . .+ dnD
ŵ(t− nD)

+ γ[r(t)ν(t+ 1) + c1r(t− 1)ν(t) + c2r(t− 2)ν(t− 1)

+ . . .+ cnC
r(t− nC)ν(t− nC + 1)] (40)

where:
di = (d′i − d′i−1) ; i = 1, ...nD; d

′
0 = −1, d′nD

= 0 (41)

To implement the algorithm one needs a computable expression for ν(t+1). Using a similar
development as for the basic gradient adaptation algorithm one finds:

ν(t+ 1) =
ν◦(t+ 1)

1 + γrT (t)r(t)
(42)

Relations with other algorithms

Many algorithms have been proposed for improving the “gradient rule” in order to accel-
erate the convergence of the adaptation/learning algorithm for a given adaption gain/learning
rate. The algorithm of (38) is termed ARIMA (Autoregressive with Integrator Moving
Average ) algorithm [7]. The various algorithms described in the literature are of MAI
form or ARI form. The MAI form includes “Integral + Proportional” algorithm [6, 15]
(c1 ̸= 0, ci = 0,∀ i > 1, d′i = 0,∀ i ≥ 0), “Integral + Proportional + Derivative” algorithm
[16, 7] (c1, c2, ci = 0 for i > 2, d′i = 0, i ≥ 0), “Averaged gradient” (ci, for i = 1, 2, ..., d′i =
0,∀ i ≥ 0) [17, 18]. The ARI form includes “Conjugate gradient” and “Nesterov” algorithms
[19, 20] (ci = 0, for i = 1, 2, .., d′1 ̸= 0, d′i = 0, for i > 1) as well as the “Momentum back
propagation” algorithm [21] which corresponds to the conjugate gradient plus a normaliza-
tion of γ by (1− d′1)

9. For more details see [7]. Application of the I+P algorithm in active
vibration control is discussed in [15].

A particular form of the ARIMA algorithms termed “ARIMA2” (c1, c2, ci = 0, ∀ i >
2, d′1 ̸= 0, d′i = 0,∀ i > 1) will be studied subsequently and evaluated experimentally.10

5. Design of the dynamic adaptation gain - performance issues

The dynamic adaptation gain/learning rate will introduce a phase distortion on the
gradient depending on the frequency.

9There are very few indications on how to choose the various weights in the above mentioned algorithms.
10The algorithms mentioned above can be viewed as particular cases of the ARIMA2 algorithm.
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• Assume that the algorithms should operate for all frequencies in the range: 0 to 0.5fs.

• Assume that the gradient of the criterion to be minimized contains a single frequency.

In order to minimize the criterion, the phase distortion introduced by the dynamic adapta-
tion gain/learning rate should be less than 90◦ at all the frequencies. In other terms, the

transfer function HDAG = C(z−1)
D′(z−1)

should be SPR. But a transfer function which is SPR has

its poles and zeros inside the unit circle (asymptotically stable poles and zeros). For transfer
functions having their poles and zeros inside the unit circle one has the following property:

DAG Property 1: Assume that the polynomials C(z−1) and D′(z−1) have all their
zeros inside the unit circle, then:

I =

∫ π

0

log

(∣∣∣∣ C(e−iω)

D′(e−iω)

∣∣∣∣) dω = 0 (43)

The proof of this property is given in Appendix A.
This result allows to conclude that the average gain (in dB) over the frequency range 0

to 0.5fs is 0 dB (=1), i.e. on average this filter will not modify the adaptation gain/learning
rate. It is just a frequency weighting of the adaptation gain/learning rate. To be more spe-
cific, Figure 6 shows the frequency characteristics of two DAGs which will be subsequently
used in the experimental section11. It can be observed first that the phase is within the
range ±90◦, i.e. they are SPR. Then one can observe that effectively the average gain over
the frequency range 0 to 0.5fs (fs = 2500 Hz) is 0 dB. Now examining the magnitude,
one observes that both are low pass filters amplifying low frequencies. This means that
if the frequency content of the gradient is in the low frequency range, the effective adap-
tation gain/learning rate will be larger than γ, which should have a positive effect upon
the adaptation/learning transient. In particular the DAG which has a larger gain in low
frequencies (ARIMA2) should provide better performance than the (I+P) DAG (which is
indeed the case—see Section 7). Furthermore, since the average gain is 0 dB, the filters
shown in Figure 6 will introduce an attenuation in the high frequency range, reducing the
effective adaptation gain in this region. This will reduce the influence of the measurement
noise located usually in the high frequency region and steady state performance is improved
(in general) with respect to the gradient (see Section 7).

Since we need to have a DAG which is SPR, we will provide subsequently the tools for
designing a SPR DAG. We will consider the case of the ARIMA2 algorithm introduced in
[7]. The DAG in this case will have the form:

HDAG =
C(q−1)

D′(q−1)
=

1 + c1q
−1 + c2q

−2

1− d′1q
−1

(44)

A criterion for the selection of c1, c2 and d′1 in order that the DAG be SPR is given below.

SPR criterion for DAG: The conditions assuring that HDAG(z) = 1+c1z−1+c2z−2

1−d
′
1z

−1
is

strictly positive real (SPR) are:

11ARIMA2 filter with c1 = 0.99, c2 = 0, d′1 = 0.9 and I+P filter with c1 = 0.99, c2 = 0, d′1 = 0.
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Figure 6: Frequency characteristics of two DAGs (used in the experiments).

• for c2 ≤ 0, c1 must be such that

−1− c2 < c1 < 1 + c2

• for c2 ≥ 0

– if the following condition is satisfied

2(d
′

1 − c2) <
√
2(c2 − c22)(1− d

′2
1 ) < 2(d

′

1 + c2)

the maximum bound on c1 is given by

c1 < d
′

1 − 3d
′

1c2 + 2
√

2(c2 − c22)(1− d
′2
1 )

otherwise the maximum bound on c1 is given by

c1 < 1 + c2
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– if the following condition is satisfied

2(d
′

1 − c2) < −
√

2(c2 − c22)(1− d
′2
1 ) < 2(d

′

1 + c2)

the minimum bound on c1 is given by

c1 > d
′

1 − 3d
′

1c2 −
√

2(c2 − c22)(1− d
′2
1 )

otherwise the minimum bound on c1 is given by

c1 > −1− c2

The proof of this result is given in Appendix B.
From these conditions, closed contours in the plane c2−c1 can be defined for the different

values of d′1 allowing to select c1 and c2 for a given value of d′1 so that the DAG is SPR12.
Such a diagram is presented in Figure 7.

6. Design of the dynamic adaptation gain—stability issues

Eq. (38) can be expressed also as

ŵ(t+ 1) = HPAA(q
−1)γr(t)ν(t+ 1) (45)

where HPAA is a MIMO diagonal transfer operator having identical terms. All the diagonal
terms are described by:

H ii
PAA(q

−1) =
1 + c1q

−1 + c2q
−2 + ..+ cnC

q−nC

(1− q−1)(1− d′1q
−1 − d′2q

−2 − ..d′nD′q
−n′

D)

=
C(q−1)

(1− q−1)D′(q−1)
=

C(q−1)

D(q−1)
(46)

The relation between the coefficients of polynomials D and D’ is given in (41).
One has the following result for the stability of the adaptive feedforward attenuation

scheme using a dynamic adaptation gain/learning rate:
Stability Conditions with DAG: For the system described by Eqs (2) through (14) using
the PALA of (40), (41) and (42), one has limt→∞ ν(t+ 1) = 0 for any positive adaptation
gain γ and initial conditions ŵ(0), ν(0), if:

• The transfer function associated with the transfer operator H ii
PAA(q

−1) given in (46)
is a positive real (PR) transfer function with a pole at z = 1.

• The transfer function H ′(z−1) given in (28) is a strictly positive real (SPR) transfer
function

12A Matlab routine is available for drawing these contours.
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Figure 7: SPR contours in the plane c2 − c1 for various values of d′1(0, 0.5, 0.9) for the DAG given in Eq.
(44).

The proof of this result is given in Appendix C.
For the particular case of the ARIMA2 algorithm, in order to operate with high adapta-

tion/learning rate, the coefficients c1, c2 and d′1 should be chosen such that the DAG is SPR
and the H ii

PAA is PR, i.e.

H ii
PAA =

1 + c1q
−1 + c2q

−2

1− d1q−1 − d2q−2
=

1 + c1q
−1 + c2q

−2

(1− q−1)(1− d′1q
−1)

(47)

should be PR. It is important for applications to give explicit bounds for the selection of
the coefficients c1, c2, d

′
1 in order to guarantee the positive realness of the embedded ARIMA

filter. One has the following result:
PR conditions for HPAA: In order that the transfer operator H ii

PAA given in (47) be
characterized by a PR transfer function, the necessary and sufficient conditions are:

−1 < d
′

1 < 1 (48)

0 ≤ δ ≤ 2 (49)

−1 ≤ d
′

1 −
γ

1− δ/2
≤ 1 (50)
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where:

δ =
1 + c1 + c2
1− d

′
1

; γ =
d

′
1c1 + d

′2
1 + c2

d
′
1 − 1

(51)

The proof of this criterion is given in Appendix D.
From these conditions, closed contours in the plane c2−c1 can be defined for the different

values of d′1 allowing to select c1 and c2 for a given value of d′1 so that the HPAA is PR13.
Such a diagram is presented in Figure 8.

Figure 8: PR contours in the plane c2 − c1 for various values of d′1(0, 0.5, 0.9) for the HPAA of Eq. (47)

It is also interesting to see the intersections of the contours assuring the SPR of the H ii
GAD

with the contours assuring thatH ii
PAA is PR. Such an intersection is shown in Fig.9. From this

figure one can conclude that not all the SPRHGAD will lead to anHPAA PR. In such cases the
performances are improved for low adaptation gain, but one cannot guarantee asymptotic
stability for large values of the adaptation gain γ (see [7] for a simulated example). Fig. 9
shows also that there is a region where despite HPAA being PR, HDAG is not SPR. For such
configurations, large adaptation gains can be used but the adaptation transient is slower
than for the basic gradient algorithm.

13A Matlab routine is available for drawing these contours.
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Figure 9: Intersection in the plane c1 − c2 of the contour HPAA = PR with the contour HGAD = SPR for
d′1 = 0.5

For small values of the adaptation gains/learning rates the passivity/stability condition
can be relaxed using averaging [22]. Using the results of [3], under the hypothesis of an
input signal spanning all the frequencies up to half of the sampling frequency, passivity
in the average will be assured if the frequency interval where H ii

PAA is not positive real is
smaller than the frequency interval where H ii

PAA is positive real. In fact what is important is
that the H ii

PAA is PR in the frequency region of operation (mainly defined by the spectrum
of the input signals to the systems).

7. Experimental results

Two types of signals used as unknown disturbances acting on the system have been
considered:

• A broad-band disturbance 70-170 Hz, to which two tonal disturbances located at 100
Hz and 140 Hz have been added

• A broad-band disturbance 70-220 Hz
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The steady state and transient attenuation14 will be evaluated for the various values of
the parameters c1, c2 and d′1 given in Tables 2 and 3. The system will operate in open loop
during the first 15 s. For all the experiments the constant adaptation gain γ has the value
0.2 and the adjustable filter Q̂ has 60 parameters.

Table 2: ARIMA algorithms with SPR HDAG

Algorithm HPAAPR HDAGSPR c1 c2 d′1
Gradient Y Y 0 0 0

Conj.Gr/Nest. N Y 0 0 0.9
I+P+D (γP = −2γD) N Y 1 0.8 0

I+P Y Y 0.99 0 0
ARIMA2 (1) N Y −0.55 0.4 0.75
ARIMA2 (2) N Y 0.99 0 0.9

Table 3: ARIMA algorithms with SPR HDAG and HPAA PR.

Algorithm HPAAPR HDAGSPR c1 c2 d′1
Gradient Y Y 0 0 0

Conj.Gr/Nest. Y Y 0 0 0.333
I+P+D (γP = −2γD) Y Y 0.1 0.333 0

I+P Y Y 0.99 0 0
ARIMA 2 Y Y 0.1 0.08 0.22

7.1. Broad-band disturbance 70-170 Hz plus two tonal disturbances located at 100 Hz and
140 Hz

Figure 10 shows the time response of the system as well as the evolution of the global
attenuation when using the Gradient algorithm (top) and the ARIMA2 (2) algorithm (bot-
tom) (last row of Table 2). One can observe that the ARIMA2 (2) algorithm converges
faster than the Gradient algorithm and provides also better attenuation in steady state.
Figure 11 shows for the same experiments a comparison of the PSD of the residual noise
in the absence of the control and the PSD of the residual noise at 600 s under the control
effect. One can observe that the ARIMA2 algorithm provides better attenuation in the
low frequencies as well as in the high frequency range when compared with the Gradient
algorithm. This is coherent with the frequency characteristics of the ARIMA 2 dynamic
adaptation gain, shown in Figure 12. It has a larger gain in low frequencies and introduces

14The attenuation is defined as the ratio between the variance of the residual noise in the absence of the
control and the variance of the residual noise in the presence of adaptive feedforward compensation. The
variance is evaluated over a horizon of 3 s.
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attenuation in the high frequencies (in other terms: the adaptation gain is higher in low
frequencies and lower in the high frequencies).

The top of Fig. 13 shows the time evolution of the global attenuation for the algorithms
considered in Table 2. As it can be seen, there is a clear improvement in the adaptation
transient using ARIMA2 (2) (last row of Table 2) with respect to the Gradient algorithm
(first row of Table 2). The Conjugate Gradient/Nesterov algorithm also provides a significant
improvement of the transient. The ARIMA2 (2) algorithm reduces the adaptation/learning
transient by a factor of three and a half. One also sees an improvement in steady state
attenuation with respect to gradient adaptation. The other algorithms (from Table 2) also
provide an improvement with respect to the gradient algorithms. Note that except for the
I+P algorithm, HPAA is not PR, therefore there is a risk of instability for large values of the
adaptation gain γ.

The bottom of Fig. 13 shows the time evolution of global attenuation for the algorithms
of Table 3 (PR constraint on HPAA). The I+P adaptation algorithm gives the best results.
The transient improvement provided by the various algorithms with respect to the gradient
algorithm is slightly less significant than for the algorithms of Table 2. However these
algorithms will tolerate high values of the adaption/learning rate.

7.2. Broad band disturbance 70-220 Hz

The top of Fig. 14 shows the time evolution of global attenuation for the algorithms given
in Table 2. One can draw the same conclusions as for the previous type of disturbance. A
significant reduction of the adaptation transient with respect to the gradient is obtained
with the various algorithms proposed. The ARIMA2 (2) algorithm (last row of Table 2)
provides the best result followed closely by the Conjugate Gradient/Nesterov algorithm.
The bottom of Fig. 14 shows the time evolution of global attenuation for the algorithms of
Table 3 (PR constraint on HPAA). Similar results to those obtained for the previous type of
disturbance are obtained. The I+P adaptation algorithm gives the best results in terms of
adaptation transients.

8. Conclusions

The paper has tried to give a global picture of the use of dynamic adaptation gain/learning
rate for improving the convergence speed of adaptive feedforward noise attenuation schemes
using the gradient algorithm with constant adaptation gain/learning rate. The dynamic
adaptation gain introduces a frequency weighting which allows to tune it for getting high
gain in low frequencies and attenuation in high frequencies. It is this behaviour which
explains the benefit of using the dynamic adaptation gain for improving both adaptation
transients and steady state performance. While the experimental verifications have been
carried out in the context of active noise control, similar results can certainly be obtained
in the context of active vibration control.
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Figure 10: Time evolution of the residual noise using the Gradient algorithm (top) and using the ARIMA2
algorithm (bottom).

Appendix A. Average gain property for strictly positive real DAG

Lets us consider the function log
(∣∣∣ C(z−1)

D′ (z−1)

∣∣∣), where C(z−1) = 1+
∑nC

k=1 ckz
−k, D

′
(z−1) =

1−
∑nD

′

k=1 d
′

kz
−k. One seeks to evaluate (43).
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Figure 11: Comparison of the residual noise PSD in open loop and in closed loop (t=600 s) using the Gradient
algorithm (top) and using the ARIMA2 (2) algorithm. Disturbance 70 - 170 Hz + 2 tonal disturbances.
(bottom).

For |z| = 1, one has z = ejω, dz = jejωdω, and dz
z
= jdω. Thus one can write

I =
1

j

(∮
T
log

∣∣∣∣∣1 +
nC∑
k=1

ckz
−k

∣∣∣∣∣ dzz −
∮
T
log

∣∣∣∣∣∣1−
nD

′∑
k=1

d
′

kz
−k

∣∣∣∣∣∣ dzz
 (A.1)

where T is the unit circle.
On the other hand

∣∣∣1 +∑nC
k=1 ckz

−k
∣∣∣ = ∣∣∣1 +∑nC

k=1 ckz
k
∣∣∣ for |z| = 1. The poles of f(z) =

log
(∣∣∣1 +∑nC

k=1 ckz
k
∣∣∣) are the zeros of

∣∣∣1 +∑nC
k=1 ckz

k
∣∣∣, and they all lie outside the unit
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Figure 12: Frequency figcharacteristics of HDAG for the various algorithms given in table 3

circle (by assumption, otherwise HPAA cannot be PR). Therefore the function f : z 7→ f(z)
is holomorphic in the open unit circle, and one can apply the Cauchy Integral’s Formula
(see [23, pg. 411]). This formula yields

1

j

∮
T
f(z)

dz

z
= Ind(T, 0)f(0)

where Ind(T, 0) is the index of the unit circle with respect to z = 0. One has Ind(T, 0) = 1,
and f(0) = log(1) = 0. Therefore one gets

1

j

∮
T
log

(∣∣∣∣∣1 +
nC∑
k=1

ckz
−k

∣∣∣∣∣
)

dz

z
=

1

j

∮
T
f(z)

dz

z
= 0

The same machinery can be applied mutatis mutandis for f(z) = log
∣∣∣1−∑nD

′

k=1 d
′

kz
k
∣∣∣
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Figure 13: Time evolution of the global attenuation for the algorithms of Table 2 (top) and of Table 3
(bottom). Disturbance 70 - 170 Hz + 2 tonal disturbances.

and one finally obtains ∫ +π

−π

log

(∣∣∣∣ C(e−iω)

D′(e−iω)

∣∣∣∣) dω = 0
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Figure 14: Time evolution of the global attenuation for the algorithms of Table 2 (top) and of Table 3
(bottom). Disturbance 70 -220 Hz.

and since the the function ∣∣∣∣ C(e−iω)

D′(e−iω)

∣∣∣∣
is even one gets the claimed result.
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Appendix B. Proof of SPR conditions for HDAG

In order to assess the strict real positivity of HDAG(z) on must check the condition

Re
(
(1− d

′

1z)(1 + c1z
−1 + c2z

−2)
)
> 0 (B.1)

Set z = ejω = cos(ω) + j sin(ω), and the condition (B.1) becomes

(1− c2 − d′1c1) + (c1 − d′1c2 − d′1) cos(ω) + 2c2 cos
2(ω) > 0 (B.2)

Set X = cos(ω), x ∈ [−1, 1] and f(X) = 2c2X
2 + (c1 − d′1c2 − d′1)X + (1− c2 − d′1c1).

• case c2 ≤ 0
f has a finite maximum, and it is located at Xmax =

−c1+d′1c2+d′1
4c2

.
If Xmax > 1 one must verify f(−1) > 0, moreover one has f(1) > f(−1).
If Xmax < −1 one must verify f(1) > 0, moreover one has f(−1) > f(1).
If −1 < Xmax < 1 one must verify at the same time f(−1) > 0 and f(1) > 0.
In any case one must check that min(f(−1), f(1)) > 0. But f(1) > 0 implies that
c1 > −c2 − 1, and f(−1) > 0 implies that c1 < c2 + 1. Thus for c2 < 0 the passivity
condition is equivalent to −1− c2 < c1 < 1 + c2.

• case c2 = 0
In this case f is represented by a line, and one must again verify that f(−1) > 0 and
f(1) > 0 that leads to the passivity condition −1 < c1 < 1

• case c2 > 0

In this case f has a finite minimum at Xmin =
−c1+d

′
1c2+d

′
1

4c2
. A sufficient condition

for f(X) ≥ 0 ∀X is that f(X) = 0 has a unique solution. In such a situation the
discriminant of f denoted ∆ is given by ∆ = (c1− d

′
1c2− d

′
1)

2− 8c2(1− c2− d
′
1c1), and

one must have ∆ = 0, which is equivalent to

c21 + c1(−2d
′

1 + 6d
′

1c2) + d
′2
1 (c2 + 1)2 + 8c2(c2 − 1) = 0 (B.3)

Thus, one looks for the solutions of (B.3). The discriminant ∆′ of (B.3) is ∆′ =
32(c2 − c22)(1− d

′2
1 ), and the two solutions of (B.3) are

c∗1+ = d
′

1 − 3d
′

1c2 + 2
√

2(c2 − c22)(1− d
′2
1 )

c∗1− = d
′

1 − 3d
′

1c2 − 2
√

2(c2 − c22)(1− d
′2
1 )

On the other hand if −1 ≤ Xmin ≤ 1 one must have (owing to the expression of Xmin)

−4c2 + d
′

1c2 + d
′

1 < c1 < 4c2 + d
′

1c2 + d
′

1 (B.4)

Now if c∗1+ meets (B.4), the upper bound on c1 is d
′
1 − 3d

′
1c2 + 2

√
2(c2 − c22)(1− d

′2
1 ),

otherwise this upper bound is given by c1 < 1+c2, and similarly if c∗1− meets (B.4) the

lower bound on c1 is d
′
1 − 3d

′
1c2 − 2

√
2(c2 − c22)(1− d

′2
1 ), otherwise this lower bound is

given by c1 > −c2 − 1. This ends the proof.
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Appendix C. Stability of the system using the dynamic adaptation gain

Consider Eq. (45). Using the [A,B,C,D] state space representation associated to
HPAA(z) one gets:

x(t+ 1) = Ax(t) +Br(t)ϵ(t+ 1) (C.1)

w̃(t+ 1) = Cx(t) +Dr(t)ν(t+ 1) (C.2)

and respectively:

rT (t)w̃(t+ 1) = rT (t)Cx(t) + rT (t)Dr(t)ν(t+ 1) (C.3)

Eqs. (C.1), and (C.3) define an equivalent feedback system, the equivalent feedback
path being defined by (C.1) and (C.3). In order to apply passivity theorem the equiv-
alent feedback path should be passive. One can use Theorem 3.3.1 from [6]:

Theorem 1. For a PAA having the form of Eqs (C.1) and (C.2), the equivalent
feedback path described by Eqs. (C.1), and (C.3) is passive, i.e.,

η(0, t1) =

t1∑
t=0

ν(t+ 1)rT (t)w̃(t+ 1) ≥ −γ2 ;

γ2 < ∞ for all t ≥ 0 (C.4)

if the associated linear system [A,B,C,D] described by Eqs.(C.1) and (C.2) is passive,
or equivalently, if HPAA(z) given in Eq. (45) is a PR transfer matrix.

Since the equivalent path is passive, Using Theorem C2 from [6] one conclude that if
the equivalent feedforward path is characterized by a SPR transfer function, one has
that limt→∞ ν(t+ 1) = 0 for any initial conditions.

Appendix D. Proof of PR conditions for HPAA

A first necessary condition is given by condition (48) assuring that the poles of the
transfer functionHPAA are inside or on the unit circle. By performing a partial fraction
expansion of HPAA, one has:
HPAA(q

−1) = 1+ δq−1

1−q−1 +
γq−1

1−d
′
1q

−1
. Set β such that β ∈]0, 1[, one can write HPAA(q

−1) =

H1(q
−1) + H2(q

−1) with H1(q
−1) = β + δq−1

1−q−1 = β
1−β−δ

β
q−1

1−q−1 and H2(q
−1) = (1 − β) +

γq−1

1−d
′
1q

−1
= (1−β)

1−
(
d
′
1−

γ
1−β

)
q−1

1−d
′
1q

−1
. SinceH1, H2 are first order transfer function operators,

and since β > 0, 1 − β > 0, a sufficient condition for H1 and H2 to be both PR is
that their zeros be inside or on the unit circle. This is assured if the two following
conditions are met simultaneously

−1 ≤ β − δ

β
≤ 1 (a)
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−1 ≤ d
′

1 −
γ

1− β
≤ 1 (b)

If (a) and (b) are met at the same time, there exists at least one β ∈]0, 1[ such that the
two conditions (a) and (b) are met at the same time, and this value is β0 the smallest
value of β such that Re(H1(e

iω)) ≥ 0 ∀ω. Condition (a) will be satisfied if condition
(49) is met. One has therefore 0 ≤ δ ≤ 2 and β ∈ [ δ

2
, 1[. Moreover, the function

f(β) = d
′
1 −

γ
1−β

is monotone for β ∈ [ δ
2
, 1[. If there exists only one value of β such

that condition b) is satisfied, this value is necessarily δ/2 since −1 < d
′
1 < 1. Hence

condition (50).

These conditions are also necessary: Let us assume that the condition β−δ
β

≤ 1 is

violated, since β > 0 one has δ < 0. By definition δ = 1+c1+c2
1−d

′
1

and 1 − d
′
1 > 0. That

leads to 1 + c1 + c2 < 0. But from the Jury criterion [24], a necessary and sufficient
condition for 1+c1q

−1+c2q
−2 be a stable polynomial is that at the same time the three

following conditions |c2| < 1, 1 + c1 + c2 > 0, 1− c1 + c2 > 0 are verified. Therefore if
β−δ
β

> 1, one has 1 + c1 + c2 < 0 and 1 + c1q
−1 + c2q

−2 cannot be stable, and HPAA

cannot be positive real. Similarly if β−δ
β

≤ −1, one has δ ≥ 2 and since 1 − d
′
1 > 0

there exists some values of d
′
1 such that 1 + c1 + c2 > 2: for c1 = 0 this implies c2 > 1

which is not compatible with the first condition of the Jury criterion, thus in this case
1 + c1q

−1 + c2q
−2 cannot be stable and HPAA cannot be positive real.

This ends the proof.

References

[1] S. Elliott, Signal processing for active control, Academic Press, San Diego, California, 2001.
[2] I. D. Landau, T.-B. Airimitoaie, A. Castellanos Silva, A. Constantinescu, Adaptive and Robust Active

Vibration Control—Methodology and Tests, Advances in Industrial Control, Springer Verlag, 2017.
[3] I. D. Landau, M. Alma, T.-B. Airimitoaie, Adaptive feedforward compensation algorithms for

active vibration control with mechanical coupling, Automatica 47 (10) (2011) 2185 – 2196.
doi:10.1016/j.automatica.2011.08.015.

[4] I. D. Landau, T.-B. Airimitoaie, M. Alma, IIR Youla–Kučera parameterized adaptive feedforward
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