Separating Fourier and Schur multipliers
Multiplicateurs de Fourier et de Schur séparants
Résumé
Let $G$ be a locally compact unimodular group, let $1\leq p<\infty$,
let $\phi\in L^\infty(G)$ and assume that the Fourier multiplier $M_\phi$
associated with $\phi$ is bounded on the noncommutative $L^p$-space $L^p(VN(G))$.
Then $M_\phi\colon L^p(VN(G))\to L^p(VN(G))$ is separating (that is,
$\{a^*b=ab^*=0\}\Rightarrow\{M_\phi(a)^* M_\phi(b)=M_\phi(a)M_\phi(b)^*=0\}$
for any $a,b\in L^p(VN(G))$) if and only if there
exists $c\in\mathbb C$ and a continuous
character $\psi\colon G\to\mathbb C$ such that $\phi=c\psi$
locally almost everywhere. This provides a characterization of isometric
Fourier multipliers on $L^p(VN(G))$, when $p\not=2$. Next, let
$\Omega$ be a $\sigma$-finite measure space, let $\phi\in L^\infty(\Omega^2)$
and assume that the Schur multiplier
associated with $\phi$ is bounded on the
Schatten space $S^p(L^2(\Omega))$. We prove that this
multiplier is separating
if and only if
there exist a constant $c\in\mathbb C$ and two unitaries
$\alpha,\beta\in L^\infty(\Omega)$ such that
$\phi(s,t) =c\, \alpha(s)\beta(t)$ a.e. on
$\Omega^2.$ This provides a
characterization of isometric Schur multipliers
on $S^p(L^2(\Omega))$, when $p\not=2$.
Fichier principal
Separating Fourier and Schur multipliers-v27.pdf (427.12 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|