Moduli of Higgs bundles over the five punctured sphere - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Moduli of Higgs bundles over the five punctured sphere

Résumé

We look at rank two parabolic Higgs bundles over the projective line minus five points which are semistable with respect to a weight vector µ ∈ [0, 1] 5. The moduli space corresponding to the central weight µ c = (1 2 ,. .. , 1 2) is studied in details and all singular fibers of the Hitchin map are described, including the nilpotent cone. After giving a description of fixed points of the C *-action we obtain a proof of Simpson's foliation conjecture in this case. For each n ≥ 5, we remark that there is a weight vector so that the foliation conjecture in the moduli space of rank two logarithmic connections over the projective line minus n points is false.
Fichier principal
Vignette du fichier
HiggsSphere03_2023.pdf (715.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04040241 , version 1 (21-03-2023)

Identifiants

  • HAL Id : hal-04040241 , version 1

Citer

Thiago Fassarella, Frank Loray. Moduli of Higgs bundles over the five punctured sphere. 2023. ⟨hal-04040241⟩
59 Consultations
61 Téléchargements

Partager

More