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MODULI OF HIGGS BUNDLES OVER THE FIVE PUNCTURED
SPHERE

THIAGO FASSARELLA AND FRANK LORAY

Abstract. We look at rank two parabolic Higgs bundles over the projective line minus five
points which are semistable with respect to a weight vector µ ∈ [0, 1]5. The moduli space
corresponding to the central weight µc = ( 12 , . . . ,

1
2 ) is studied in details and all singular fibers

of the Hitchin map are described, including the nilpotent cone. After giving a description
of fixed points of the C∗-action we obtain a proof of Simpson’s foliation conjecture in this
case. For each n ≥ 5, we remark that there is a weight vector so that the foliation conjecture
in the moduli space of rank two logarithmic connections over the projective line minus n
points is false.

1. Introduction

Let P1 be the complex projective line and let Λ = 0 + 1 + λ + t +∞ be a divisor on it,
supported on five distinct points. We refer to Λ as divisor of parabolic points. Let ωP1(Λ) be
the sheaf of 1-forms with simple poles on Λ. We study moduli spaces of traceless semistable
parabolic Higgs bundles over (P1,Λ). These moduli spaces parametrize triples (E, l, θ), where
E is a rank two vector bundle on P1, of degree zero, with the additional data l = {li}, a
one dimensional subspace li, on the fiber over each parabolic point, and θ : E → E⊗ωP1(Λ)
consists of a traceless homomorphism, which is called a Higgs field. The construction of
these moduli spaces depends on the choice of a weight vector µ ∈ [0, 1]5, which determines
the stability condition.

The nonabelian Hodge correspondence [9, 21, 22], gives an identification between Higgs
bundles and local systems, then our moduli spaces are in correspondence with the character
variety, which parametrizes local systems on P1 with given conjugacy classes at the punctures.
This last is a topological object, while in the former case it depends on the algebraic structure
of the punctured line. This leads to the investigation of algebraic invariants, such as the
Hitchin fibration, which is an important object with recent deep results, see for example
[8, 17, 4]. The Hitchin map is defined on this moduli spaces, it sends a Higgs field to its
determinant, which is a quadratic differential. On the one hand, this map is known to be
an algebraically integrable system, i.e. its general fiber is Lagrangian and isomorphic to an
Abelian variety. On the other hand, singular fibers are difficult to deal with. In [10, 11, 7],
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singular fibers in the moduli space of twisted pairs were studied. In this paper we determine
all singular fibers of the Hitchin map in the specific parabolic case (P1,Λ).

We also describe the locus of fixed points with respect to the C∗-action given by multiplica-
tion on the Higgs field. This motivates to investigate the foliation conjecture [19, Question
7.4] on the moduli space of rank two logarithmic connections with generic residues. The
parabolic version of the foliation conjecture has been proved in [16, Corollaries 5.7 and 6.2]
for the moduli space of connections over P1 minus four points (when the weight vector is
generic), and recently [12] deals with the case P1 minus five points by assuming the weight
vector µ satisfies

∑
µi < 1. Since this last case lies in the unstable zone (any parabolic

connection has µ-unstable parabolic vector bundle) we turn our attention to the stable zone.
After determining the locus of fixed points of the C∗-action, we obtain a proof of the foliation
conjecture in the case P1 minus five points with the central weight vector µc =

(
1
2
, . . . , 1

2

)
.

We also remark that for all n ≥ 5 there is a weight vector (in the stable zone), such that the
foliation conjecture in the case P1 minus n points is false.

In our context, every Higgs field having nonvanishing determinant is irreducible, i.e. it does
not have any invariant line subbundle, then it is stable for any choice of weight vector. The
moduli space H associated to the central weight µc =

(
1
2
, . . . , 1

2

)
is particularly interesting,

indeed it is a smooth quasi-projective variety of dimension four and its automorphism group
admits a modular realization of

(
Z/2Z

)4 as a subgroup. This subgroup, denoted here by
El, consists of elementary transformations elemI , for each subset I ⊂ {0, 1, λ, t,∞} of even
cardinality.

We shall consider only Higgs fields which are nilpotent with respect to the parabolic
direction. This implies that our moduli space H contains an open dense subset U isomorphic
to the cotangent bundle T ∗S, where S denotes the moduli space of parabolic vector bundles.
It is well known that S is a del Pezzo surface of degree four, see [2, 15], its automorphism
group has order 16 and coincides with the group El of elementary transformations [15, 1].
There are 16 rational curves ζi with (−1)-self intersection on this surface, we denote by Σ
the union of them.

The main goal of this paper is to determining all singular fibers of the Hitchin map. The
most complicated one is the nilpotent cone N , consisting of Higgs fields having vanishing
determinant. In order to describe it, let us consider the forgetful map for : H 99K S, which
forgets the Higgs field. Note that, since S admits an embedding in H, by taking the Higgs
field to be zero, it gives one component of N . Our first goal is the following result.
Theorem 1.1. The nilpotent cone of H has exactly 17 irreducible components

N = S ∪16
i=1 Ni

where for(Ni) = ζi. See Figure 2.
This is Theorem 4.5 in the main text.
Before describing the remaining singular fibers, let us briefly introduce the spectral curve.

The Hitchin basis, formed by quadratic differentials, is two dimensional. The locus of singular
spectral curves is a union of five lines. For instance, the general spectral curve Xs is a smooth
curve of genus two, branched over six points 0, 1, λ, t,∞, ρ of P1 and the corresponding
Hitchin fiber is isomorphic to the Picard variety Pic3(Xs) which parametrizes degree 3 line
bundles on Xs.
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A singular spectral curve occurs when the sixth point ρ coincides with one of the five other
points. This leads to a nodal curve Xs of genus 2, whose desingularization X̃s is an elliptic
curve branched over

{0, 1, λ, t,∞} \ {ρ}
and Xs can be obtained identifying two points w+

ρ and w−
ρ of X̃s. Let us mention that

the compactified Jacobian Pic
0
(Xs), which parametrizes isomorphism classes of torsion free

sheaves of rank one and degree zero on Xs, is obtained identifying the 0-section with the
∞-section of the P1-bundle

F = P(OX̃s
(w+

ρ )⊕OX̃s
(w−

ρ )) (1.1)

via the translation OX̃s
(w+

ρ − w−
ρ ) (cf. [18, p. 83]). See Figure 3.

We now describe the remaining singular Hitchin fibers. For this, we consider the map

f : H \N → Hpairs

to the moduli space of pairs (E, θ), which forgets the parabolic direction. This map consists
of a blowing-up of the locus formed by Higgs fields which are holomorphic at some point
ρ ∈ {0, 1, λ,∞} (Lemma 5.2). Now, let det−1(s) denote a singular Hitchin fiber, s ̸= 0,
coming from a singular spectral curve Xs which has a node at ρ. We find that det−1(s)
has two irreducible components Fhol and Fapp, which are isomorphic to F. The first one
parametrizes Higgs fields which are holomorphic at ρ, it is contracted by f , the second is
formed by Higgs fields which are apparent with respect to the parabolic direction over ρ. In
addition, the restriction of f to Fapp gives a desingularization of the compactified Jacobian
Pic

3
(Xs). This leads to the following result, which corresponds to Theorem 5.4.

Theorem 1.2. Assume that the spectral curve Xs has a nodal singularity at ρ ∈
{0, 1, λ, t,∞}. The corresponding singular fiber det−1(s) of the Hitchin map has two ir-
reducible components

det−1(s) = Fhol ∪ Fapp

which are isomorphic via any elementary transformation

(elemI)|Fhol
: Fhol → Fapp

where I ⊂ {0, 1, λ, t,∞} contains ρ and has even cardinality. Moreover:

(1) Each component is a desingularization of Pic
3
(Xs), then isomorphic to F, and the

structure of P1-bundle in Fhol is given by

f |Fhol
: Fhol → X̃s ≃ Pic

3
(Xs) \ Pic3(Xs).

(2) The map f |Fapp : Fapp → Pic
3
(Xs) is a desingularization map. See Figure 5.

(3) The intersection Fhol ∩ Fapp is the union of the 0-section and the ∞-section of Fhol.
See Figure 6.

In particular, we find that each component of the singular fiber det−1(s) is a decomposable
P1-bundle over an elliptic curve, it consists of the desingularization of the compactified
Jacobian of the corresponding nodal spectral curve. The whole fiber topologically looks like
an elliptic curve times a degenerate elliptic curve (two copies of P1 meeting in two points),
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but a suitable translation must be considered, see Remark 5.7. This confirms the guess of
C.T. Simpson [20, Discussion].

In the last section of the paper we deal with the moduli space Cν(P1,Λn), n ≥ 5, of SL2

logarithmic connections over P1. Here, Λn = t1 + · · · + tn intends to be the polar divisor,
which is supported on n distinct points, and ν = (ν1, . . . , νn) ∈ Cn is a prescribed eigenvalue
vector. For each weight vector µ and for (E,∇, l) ∈ Cν(P1,Λn) there exists a unique limit
limc→0 c · (E,∇, l) in the moduli space of µ-semistable parabolic Higgs bundles. This gives
an equivalence relation on Cν(P1,Λn) by assuming that two points are equivalent if their
limits are the same. The foliation conjecture [19, Question 7.4], in this case, predicts that
this decomposition is a Lagrangian (regular) foliation Fµ. We obtain the following result,
which corresponds to Proposition 6.3 and Theorem 6.4.

Theorem 1.3. For the moduli space Cν(P1,Λn) we have:
(1) For each n ≥ 5 there is a weight vector µ such that the foliation conjecture is false.
(2) If n = 5 then the foliation conjecture is true with weight vector µc =

(
1
2
, . . . , 1

2

)
.

We now proceed to describe briefly the contents of the paper. In Section 2 we introduce
our moduli spaces of parabolic vector bundles and Higgs bundles over the five punctured
projective line, and give some background on elementary transformations. In Section 3 we
study the locus of Higgs fields which admit unstable underlying parabolic vector bundle.
Then, in Section 4, we give an explicit description of the nilpotent cone, as well as the fixed
points with respect to the C∗-action. In Section 5, we describe the remain singular fibers of
the Hitchin map. Finally, in Section 6 we introduce moduli spaces of connections and the
foliation conjecture is investigated.

2. Basic definitions

Let Λ = 0 + 1 + λ + t +∞ be a divisor on the complex projective line P1 supported on
five distinct points.

2.1. Moduli spaces. A rank two quasiparabolic vector bundle (E, l), l = {li}, on
(
P1,Λ

)
consists of a holomorphic vector bundle E of rank two on P1 and for each i ∈ {0, 1, λ, t,∞},
a 1-dimensional linear subspace li ⊂ Ei. We call Λ the divisor of parabolic points, and the
subspaces li ⊂ Ei are called parabolic directions.

Let us now introduce a notion of stability for quasiparabolic vector bundles. Fix a weight
vector µ = (µ1, . . . , µ5) of real numbers 0 ≤ µi ≤ 1. A quasiparabolic vector bundle (E, l) is
µ-semistable (respectively µ-stable) if for every line subbundle L ⊂ E we have

Stabµ(L) := degE − 2 degL−
∑
li=L|i

µi +
∑
li ̸=L|i

µi ≥ 0

(respectively the strict inequality holds). A parabolic vector bundle is a quasiparabolic vector
bundle together with a weight vector µ. We say that a parabolic vector bundle is semistable
if the corresponding quasiparabolic vector bundle is µ-semistable. For each d ∈ Z and a
weight vector µ, there is a moduli space Bunµ(P1,Λ, d), parametrizing rank two parabolic
vector bundles on

(
P1,Λ

)
, with degE = d, which are semistable.
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Let us fix d = 0. It follows from [2], that there is a polytope ∆ ⊂ [0, 1]5 consisting of
weight vectors µ such that Bunµ(P1,Λ, 0) is nonempty. There are finitely many models
Bunµ(P1,Λ, 0), corresponding to different chambers in the wall-and-chamber decomposition
of ∆, coming from to the variation of the GIT. For example, the central weight µc = (1

2
, . . . , 1

2
)

lies in the interior of a chamber and the moduli space

S = Bunµc(P1,Λ, 0) (2.1)

is a del Pezzo surface of degree four, see also [15].
A parabolic Higgs bundle is a triple (E, l, θ) where (E, l) is a quasiparabolic vector bundle

over (P1,Λ) and θ : E → E ⊗ ωP1(Λ) is a traceless homomorphism, which is nilpotent with
respect to the parabolic directions. The condition of being nilpotent means that the residual
part Res(θ, i) satisfies Res(θ, i) · li = 0 and Res(θ, i)(Ei) ⊂ li, for each i ∈ {0, 1, λ, t,∞}. We
say that θ is a parabolic Higgs field. A line subbundle L ⊂ E is called invariant under θ if
θ(L) ⊂ L⊗ωP1(Λ). In addition, θ is irreducible if it does not admit invariant line subbundle.

A parabolic Higgs bundle (E, l, θ) is called µ-semistable (respectively µ-stable) if for every
line subbundle L ⊂ E invariant under θ, we have Stabµ(L) ≥ 0 (respectively Stabµ(L) > 0).
We say that (E, l, θ) is µ-unstable if it is not µ-semistable.

It follows from [6, Propositions 3.1 and 3.2], that every parabolic Higgs field θ on (P1,Λ)
with det θ ̸= 0 is irreducible, then µ-stable for any choice of weight vector. Note also that the
condition of being nilpotent implies that the quadratic differential det θ lies in H0(P1, ω⊗2

P1 (Λ)),
which is a two dimensional vector space.

For each weight vector µ there is a moduli space Hµ(P1,Λ, 0) parametrizing parabolic
Higgs bundles on (P1,Λ), with degE = 0, which are µ-semistable [23, 24]. We denote by

H = Hµc(P1,Λ, 0) (2.2)

the moduli space corresponding to the central weight µc. It is a smooth four dimensional
quasiprojective variety.

2.2. Elementary transformations. The automorphism group of S, cf. (2.1), has order 16,
and admits a modular interpretation in terms of the group El of elementary transformations
[15, 1], which we now describe.

Assume that I ⊂ {0, 1, λ, t,∞} has even cardinality and let

DI =
∑
i∈I

i

be the corresponding divisor. We consider the following exact sequence of sheaves

0 → E ′ α→ E →
⊕
i∈I

E/li → 0

where E/li intends to be a skyscraper sheaf determined by Ei/li. We view E ′ as a quasi-
parabolic vector bundle (E ′, l′) of rank two over (P1,Λ) putting l′i := kerαi. We call it the
elementary transformation of (E, l) over DI :

elemDI
(E, l) := (E ′, l′).

After this correspondence, the determinant line bundle is affected

detE ′ = detE ⊗OP1(−DI),
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we then take a square root LI of OP1(DI), in order to obtain

det(E ′ ⊗ LI) = OP1 .

The stability condition is preserved if the weight vector µ = (µ1, . . . , µ5) is modified as
follows. If (E, l) is µ-semistable then elemDI

(E, l) is µ′-semistable with µ′
i = µi if i /∈ I and

µ′
i = 1− µi if i ∈ I. In particular, when µ is the central weight, we obtain an isomorphism

elemI : S → S (2.3)

which sends (E, l) to elemDI
(E, l)⊗ LI .

It follows from basic properties of elementary transformations that

elemI ◦ elemJ = elemK

where K = I ∪ J \ I ∩ J and the group El of transformations of the form elemI , where I
runs over all the subsets of {0, 1, λ, t,∞} of even cardinality, gives a modular realization of( Z
2Z

)4. Besides this, El coincides with the whole automorphism group of S.
Note that, similarly, each correspondence elemI also acts on Higgs bundles, giving a

modular realization of
( Z
2Z

)4 as subgroup of the automorphism group of H, which we still
denote by El ⊂ AutH. See also [6, Section 2.4] and [5, Section 4.2] for more details on
elementary transformations.

3. Higgs fields having unstable parabolic bundles

Let S and H be as in the previous section. There is an embedding S → H by taking
the Higgs field to be zero. Since the weight vector µc =

(
1
2
, . . . , 1

2

)
lies in the interior of a

chamber, any parabolic vector bundle in S is µc-stable. It might happen that (E, l, θ) is
µ-semistable with (E, l) µ-unstable. For instance an unstable parabolic bundle may be often
endowed with an irreducible Higgs field. In this section we shall studying this phenomenon.

Let us consider the forgetful map

for : H 99K S

which forgets the Higgs field. There is an open subset of H where for is well defined, it is
formed by Higgs bundles over S:

U = {(E, l, θ) ∈ H : (E, l) ∈ S}.

There is an identification between U and the cotangent bundle T ∗S, by identifying T ∗
(E,l)S

with for−1(E, l), see [24, Theorem 2.4], so H contains the cotangent bundle T ∗S as an open
and dense subset.

The next result describes which underlying parabolic bundles appear in H.

Proposition 3.1. Given (E, l, θ) ∈ H, then
• E = OP1(−d)⊕OP1(d), with d ∈ {0, 1};
• if d = 0 then at most 3 parabolic directions lie in the same embedding of OP1 ↪→ E;
• if d = 1 then at most 1 parabolic direction lies in OP1(1) ↪→ E.
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Proof. Since E has degree zero, we can assume E = OP1(−d)⊕OP1(d), with d ≥ 0. A Higgs
field

θ =

(
α β
γ −α

)
with logarithmic poles on Λ is given by homomorphisms α : OP1 → ωP1(Λ)

β : OP1(d)→ OP1(−d)⊗ ωP1(Λ)
γ : OP1(−d)→ OP1(d)⊗ ωP1(Λ)

which turns out to be equivalent to give α ∈ Γ(OP1(3))
β ∈ Γ(OP1(3− 2d))
γ ∈ Γ(OP1(3 + 2d))

Now if d ≥ 2 then β = 0 and OP1(d) is a destabilizing subbundle. This concludes the first
assertion of the statement.

Let us assume d = 0. An embedding OP1 ↪→ OP1 ⊕ OP1 , e 7→ (e, 0), passing through a
parabolic direction li over ti yields γ ∈ Γ(OP1(3) ⊗ OP1(−ti)). Thus at most 3 parabolic
directions lie in OP1 , otherwise γ = 0 and OP1 is a destabilizing subbundle. The case d = 1
is similar, and hence will be omitted. □

Corollary 3.2. Let (E, l, θ) ∈ H. Assume that the underlying parabolic bundle (E, l) is
µc-unstable. Then we are in one of the following possibilities

• E = L1⊕L2, Li ≃ OP1, L1 contains 3 parabolic directions and L2 contains 2 parabolic
directions;
• E = OP1(−1)⊕OP1(1) and OP1(−1) contains every parabolic direction;
• E = OP1(−1) ⊕ OP1(1), OP1(1) contains exactly 1 parabolic direction and OP1(−1)

contains the remaining 4 parabolic directions.
In particular, (E, l) is decomposable.

Proof. We first reduce to the case where E is trivial, up to an elementary transformation. If
E = OP1(−1) ⊕ OP1(1), Proposition 3.1 ensures that at most 1 parabolic directions lies in
OP1(1), and since the family of embeddings OP1(−1) ↪→ E is three dimensional, we can take
an OP1(−1) passing through 3 parabolic directions outside OP1(1). Now, a transformation
elemI over two of them, transforms E into the trivial vector bundle.

Assume that E is trivial and (E, l) is µc-unstable. A destabilizing subbundle L ⊂ E,
degL ≤ 0, satisfies

−2 degL−m/2 + n/2 < 0

where m is the number of parabolic directions in L and n corresponds to the parabolic
directions outside L. Hence, degL ∈ {0,−1}. In addition, by Proposition 3.1, if degL = 0
then there are exactly 3 parabolic directions in L. If degL = −1 then every parabolic
direction lies in L, and applying a transformation elemI over two parabolic points, we reduce
to the previous case.

Now we may assume that E is trivial, and there are exactly 3 parabolic directions in the
same embedding OP1 ↪→ L1 ⊂ E. We will show that µc-semistability of θ implies that there
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E {u, v, p, q, r} = {0, 1, λ, t,∞}
10 OP1 ⊕OP1 lu, lv, lp ⊂ L1 ≃ OP1 and lq, lr ⊂ L2 ≃ OP1

5 OP1(−1)⊕OP1(1) lu ⊂ OP1(1) and lv, lp, lq, lr ⊂ OP1(−1)
1 OP1(−1)⊕OP1(1) l0, l1, lλ, lt, l∞ ⊂ OP1(−1)

Table 1. 16 unstable parabolic bundles admitting stable Higgs fields

exists another embedding of OP1 ↪→ L2 ⊂ E passing through the remaining two parabolic
directions.

By simplicity, let us assume that parabolic directions l0, l1, lλ over 0, 1, λ lie in L1 and let L2

be an embedding of OP1 passing through the parabolic direction lt and we have E = L1⊕L2.
As in the proof of Proposition 3.1, since θ is nilpotent with respect to the parabolic directions,
then γ vanishes at {0, 1, λ}, β vanishes at t, and α vanishes at {0, 1, λ, t}. So, we conclude
that α = 0 and {

β : OP1 → ωP1(0 + 1 + λ+∞)
γ : OP1 → ωP1(t+∞).

If the remaining parabolic direction l∞ over∞ is outside L2 then the condition to be nilpotent
implies that β and γ vanish on it. In this case, γ must be zero, L1 is invariant under θ and then
θ is µc-unstable. When it lies in L2 then β vanishes also at∞, i.e., β : OP1 → ωP1(0+1+λ).

We have shown that E = L1 ⊕ L2, Li = OP1 , 3 parabolic directions l0, l1, lλ lie in L1, and
the remaining directions lt, l∞ lie in L2. This concludes the proof of the corollary.

□

This corollary implies that there are exactly 16 µc-unstable parabolic vector bundles which
admit a µc-semistable Higgs field θ, see Table 1. The group El acts transitively on it and
Figure 1 shows one of them.

Figure 1. Unstable parabolic bundle which admits stable Higgs field.
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Remark 3.3. Let us assume we are in the first case of Corollary 3.2: E = L1⊕L2, Li ≃ OP1 ,
L1 contains 3 parabolic directions, over 0, 1 and λ, and L2 contains 2 parabolic directions,
over ∞ and t. We have seen that any µc-semistable Higgs field on it is of the form

θ =

(
0 β
γ 0

)
with {

β : OP1 → ωP1(0 + 1 + λ)
γ : OP1 → ωP1(t+∞) , γ ̸= 0 .

Any other Higgs bundle admitting a µc-unstable parabolic vector bundle can be obtained
from this by performing an elementary transformation.

In the next result we will determine the complement H\U , formed by µc-semistable Higgs
bundles which have µc-unstable underlying parabolic bundle. Before that, let us introduce
some notation: let Higgs(E, l) be the quotient of the vector space Γ(SEnd(E, l) ⊗ ωP1(Λ))
by the automorphism group of the parabolic bundle (E, l). The stability condition has not
been considered here, a point of Higgs(E, l) lies in H only if it is µc-semistable.

Proposition 3.4. The complement H \ U has exactly 16 irreducible components and the
group El acts transitively on it. Each component is a Zariski open subset of Higgs(E, l), for
each one of the 16 decomposable parabolic bundles shown in Table 1.

Proof. An element (E, l, θ) of H \ U corresponds to a Higgs field which has µc-unstable
underlying parabolic bundle. These parabolic bundles were classified in Corollary 3.2 and
there are 16 of them. In addition, the group El acts transitively on it, so we fix one, say
E = L1 ⊕ L2, Li = OP1 , with 3 parabolic directions over 0, 1, λ lying in L1, and with the
remaining directions, over t,∞, lying in L2. The corresponding space of Higgs fields

Γ(SEnd(E, l)⊗ ωP1(Λ))

is three dimensional and its quotient by the automorphism group of (E, l) gives Higgs(E, l).
We want the locus in Higgs(E, l) formed by µc-semistable Higgs fields. According to the
proof of Corollary 3.2, any Higgs field in Higgs(E, l) is given by

θ =

(
0 β
γ 0

)
(3.1)

where {
β : OP1 → ωP1(0 + 1 + λ)
γ : OP1 → ωP1(t+∞)

and so (β, γ) lies in a three dimensional vector space. We see that θ is µc-semistable if and
only if γ ̸= 0. On the other hand, automorphisms of (E, l), i.e. automorphisms of the trivial
bundle fixing parabolic directions, are diagonal and then the quotient of

Γ(SEnd(E, l)⊗ ωP1(Λ)) \ {γ = 0}

is a two dimensional subvariety of H. □
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E {u, v, p, q, r} = {0, 1, λ, t,∞}
10 OP1 ⊕OP1 lu, lv ⊂ OP1 ↪→ E
5 OP1 ⊕OP1 lu, lv, lp, lq ⊂ OP1(−1) ↪→ E
1 OP1(−1)⊕OP1(1) l0, l1, lλ, lt, l∞ ⊈ OP1(1)

Table 2. 16 special lines in S

4. Nilpotent cone

The nilpotent cone N is formed by Higgs fields having vanishing determinant, we will
show that it has 17 irreducible components. Of course it contains S, the locus obtained
by taking θ = 0, which is a del Pezzo surface of degree four. We will show that outside S
there is exactly one component for each of the 16 special rational curves of S (those which
have (−1)-self intersection). These curves are parametrized by parabolic structures given in
Table 2, see [15] for details.

We first determine the intersection between N and H\U , i.e., µc-semistable Higgs bundles
having µc-unstable parabolic vector bundle and with vanishing determinant. To give one
example, let

Θ1 = (L1 ⊕ L2, l, θ) , Li ≃ OP1

where the parabolic structure is given by

l0, l1, lλ ⊂ L1 and lt, l∞ ⊂ L2

and

θ =

(
0 0
dx

(x−t)
0

)
. (4.1)

Note that the destabilizing subbundle L1 for the underlying parabolic structure is non-
invariant under θ. By performing the transformations elemI ∈ El we get at least 16 µc-
semistable Higgs bundles, Θi, i = 1, . . . , 16, having µc-unstable underlying parabolic vector
bundles. The next result shows that these are all the cases.

Proposition 4.1. There are exactly 16 Higgs bundles in H\U with vanishing determinant,
they are Θi, i = 1, . . . , 16, as above.

Proof. By Proposition 3.4 we may assume, up to a transformation elemI , that a Higgs bundle
(E, l, θ) ∈ H\U is given by θ as in (3.1) and (E, l) is the parabolic vector bundle of Figure 1.
Now, if θ has vanishing determinant then βγ = 0, and γ cannot be zero because otherwise θ
is µc-unstable. We conclude that β = 0 and up to an automorphism of (E, l) we can assume
that γ has residue 1 at t. This gives the expression for θ in (4.1).

□

Let us denote by ζi ⊂ S, i = 1, . . . , 16, the (−1)-self intersection rational curves in S, see
Table 2, and let

Σ = ∪16i=1ζi

be the union. There is a natural correspondence between the set of rational curves

{ζi : i = 1, . . . , 16}
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and the set of Higgs bundles
{Θi : i = 1, . . . , 16}

in N ∩ (H \ U). For instance, we first associate the rational curve ζ1 ⊂ S, corresponding to
parabolic vector bundles with two parabolic directions lt, l∞ inside OP1 ≃ L2 ⊂ OP1 ⊕OP1 ,
to Θ1. The structure of the underlying parabolic vector bundle of Θ1 is infinitely close to
the parabolic structure varying in ζ1. Now, the correspondence

ζi ←→ Θi

follows by the action of El in both sets.
We will see that besides S, the nilpotent cone has 16 componentsNi which can be obtained

as one point compactification of Ni ∩ U , i.e.

Ni = (Ni ∩ U) ∪ {Θi}

So, first we study the restriction of the nilpotent cone to U .

Proposition 4.2. If (E, l, θ) ∈ U has vanishing determinant, then (E, l) ∈ Σ, ie. for(N ) =
Σ.

Proof. To begin with, note that if E = OP1(−1) ⊕ OP1(1), we can apply elemI in order to
transform E into the trivial vector bundle E = OP1 ⊕ OP1 . In addition, since (E, l) is µc-
semistable, there is no embedding of OP1 ↪→ E passing through 3 parabolic directions, and
then for computation we can assume that the parabolic directions l = {li} are normalized as

l0 =

(
1
0

)
, l1 =

(
1
1

)
, lλ =

(
1
u

)
, lt =

(
1
v

)
, l∞ =

(
0
1

)
.

Any Higgs field θ on (E, l) can be written as

θ = c1θ1 + c2θ2 ; c1, c2 ∈ C

where

θ1 =

(
u

(x−λ)
− u

(x−1)
u

(x−1)
− 1

(x−λ)
+ 1−u

x
u2

(x−λ)
− u

(x−1)
− u

(x−λ)
+ u

(x−1)

)
· dx

and

θ2 =

(
v

(x−t)
− v

(x−1)
v

(x−1)
− 1

(x−t)
+ 1−v

x
v2

(x−t)
− v

(x−1)
− v

(x−t)
+ v

(x−1)

)
· dx

and x intends to be the coordinate of P1. Then we get

det θ = (h1 + h2 · x)
dx⊗2

x(x− 1)(x− λ)(x− t)

where

h1 = (c1(1− u) + c2(1− v))(c1tu(λ− u) + c2λv(t− v))

h2 = (c1u(u− 1) + c2v(v − 1))(c1(λ− 1) + c2(t− v))
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and let us write 
a1 = c1(1− u) + c2(1− v)
a2 = c1tu(λ− u) + c2λv(t− v)
b1 = c1u(u− 1) + c2v(v − 1)
b2 = c1(λ− 1) + c2(t− v)

We see that θ has vanishing determinant if and only if

ai = bj = 0 (4.2)

for some i, j ∈ {1, 2}.
We are looking for nontrivial solutions c1, c2 for each linear system (4.2) and actually we

will show that it has a nontrivial solution if and only if the parabolic structure lies in Σ,
which is the locus of 16 special rational curves of S. To do so, we first note that the system
ai = bj = 0, for some i, j ∈ {1, 2}, has a nontrivial solution c1, c2 if and only if at least one
of the following equations hold

(v − 1)(u− 1)(u− v) = 0
(t− v)(−u+ λ)(λv − tu) = 0
u(t− 1) + v(1− λ) + λ− t = 0
vu(ut(λ− 1) + vλ(1− t) + uv(t− λ)) = 0

This last means that either there are two parabolic points lying in the same embedding
OP1 ↪→ OP1 ⊕ OP1 or there is an embedding OP1(−1) ↪→ OP1 ⊕ OP1 passing through 4
parabolic directions. More precisely, there is an embedding OP1(−1) ↪→ OP1 ⊕ OP1 passing
through l0, l1, lλ, l∞ when

λ− u = 0,

through l0, l1, lt, l∞ when
t− v = 0,

through l0, lλ, lt, l∞ when
λv − tu = 0,

through l1, lλ, lt, l∞ when
u(t− 1) + v(1− λ) + λ− t = 0,

and through l0, l1, lλ, lt when

ut(λ− 1) + vλ(1− t) + uv(t− λ) = 0.

The other cases are evident. This shows that (E, l) ∈ Σ, completing the proof of the
proposition.

□

We now emphasize another consequence of this proposition. Let N(E,l) be the set of Higgs
fields having (E, l) as underlying parabolic bundle and having vanishing determinant. Along
the proof of Proposition 4.2, we have seen that the intersection N(E,l) ∩ U corresponds to a
union of lines in the vector space

Higgs(E, l) ≃ C2.

More precisely, it is one single line when (E, l) ∈ ζi and (E, l) /∈ ζj for j ̸= i, and exactly
two lines when (E, l) ∈ ζi ∩ ζj.
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For convenience we give an explicit example. All the other cases can be obtained from
this with a transformation elemI . If (E, l) ∈ ζ1, i.e., E = OP1 ⊕OP1 and

l0 =

(
1
0

)
, l1 =

(
1
1

)
, lλ =

(
1
u

)
, lt = l∞ =

(
0
1

)
then

N(E,l) ∩ U = {(E, l, c · θ1) : c ∈ C}
where

θ1 =

(
0 0
dx

(x−t)
0

)
(4.3)

when (E, l) /∈ ζj for j ̸= 1. But if (E, l) lies in the intersection of two rational curves ζ1 ∩ ζj,
for instance if u = 0, then

N(E,l) ∩ U = {(E, l, c · θ1) : c ∈ C} ∪ {(E, l, c · θj) : c ∈ C}

where

θj =

(
0 dx

x(x−λ)

0 0

)
. (4.4)

It is interesting to note that for every (E, l) ∈ ζ1 the line

{(E, l, c · θ1) : c ∈ C} ⊂ U

has the same limit point in H \ U , that is,

lim
c→∞

(E, l, c · θ1) = Θ1

where
Θ1 = (L1 ⊕ L2, l, θ1) , Li ≃ OP1

has parabolic structure
l0, l1, lλ ⊂ L1 and lt, l∞ ⊂ L2.

In fact, for any c ̸= 0, by performing an automorphism

ϕc =

(
1 0
0 c−1

)
(4.5)

on (E, l), one obtains

l0 =

(
1
0

)
, l1 =

(
1
c−1

)
, lλ =

(
1

c−1u

)
, lt = l∞ =

(
0
1

)
as parabolic directions, and hence when c→∞ the parabolic structure goes to the parabolic
structure of Θ1. On the other hand, we have

ϕ ◦ (c · θ1) ◦ ϕ−1 = θ1.

Let θj, j = 1, . . . , 16, denote the transformed of θ1 by action of El. We summarise the
discussion above in the next result.
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Proposition 4.3. If (E, l) ∈ Σ belongs to the rational curve ζi, then

N(E,l) ∩ U = {(E, l, c · θi) : c ∈ C}

when (E, l) /∈ ζj, ∀j ̸= i, and

N(E,l) ∩ U = {(E, l, c · θi) : c ∈ C} ∪ {(E, l, c · θj) : c ∈ C}

when (E, l) ∈ ζi ∩ ζj. Moreover, we have

lim
c→∞

(E, l, c · θi) = Θi .

Definition 4.4. The Θi are fixed points by the C∗ action, following the terminology of [19],
we call them the 16 Hodge bundles of H. They are all the fixed points outside S.

Finally, we are ready to the main result of this section:

Theorem 4.5. The nilpotent cone of H has exactly 17 irreducible components

N = S ∪16
i=1 Ni

where
Ni = {(E, l, c · θi) : (E, l) ∈ ζi, c ∈ C} ∪ {Θi}.

See Figure 2.

Proof. The proof follows from Propositions 4.1, 4.2 and 4.3. □

Figure 2. Nilpotent cone.
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5. Other singular Hitchin fibers

In this section we study singular fibers of the Hitchin map

det : H → Γ(ω⊗2
P1 (Λ)) ≃ C2

over a point s ̸= 0. The general spectral curve Xs is a smooth curve of genus 2 branched
over 6 distinct points

0, 1, λ, t,∞, ρ

of P1 and the corresponding Hitchin fiber is Pic3(Xs). A singular spectral curve occurs when
the sixth point ρ coincides with one of the five other points. Hence, the locus of singular
spectral curves is a union of five lines

∪ρΓ(ω⊗2
P1 (Λ− ρ))

where ρ varies in {0, 1, λ, t,∞}. If s ̸= 0 lies in one of these lines then Xs is a nodal curve
of genus 2, its desingularization X̃s is an elliptic curve branched over

{0, 1, λ, t,∞} \ {ρ}

and Xs can be obtained identifying two points w+
ρ and w−

ρ of X̃s.

Remark 5.1. When Xs is a nodal curve with a single node at wρ, its compactified Jacobian
Pic

0
(Xs) is obtained identifying the 0-section with the ∞-section, see Figure 3, of the P1-

bundle

F = P(OX̃s
(w+

ρ )⊕OX̃s
(w−

ρ )) (5.1)

via the translation OX̃s
(w+

ρ − w−
ρ ), see (cf. [18, p. 83]). In particular, we have

X̃s ≃ Pic
0
(Xs) \ Pic0(Xs).

⌟

Figure 3. Resolution of the compactified Jacobian.
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We will see that the singular Hitchin fiber det−1(s), s ̸= 0, is a union of two copies of F.
Before doing this, we introduce some notation. Let

H = H \N

be the complement of nilpotent cone and let Hpairs be the moduli space of pairs (E, θ)
with (E, l, θ) in H. Notice that every Higgs bundle (E, l, θ) in H (and also in Hpairs) is
irreducible, see [6, Propositions 3.1 and 3.2]. We say that a pair (E, θ) is holomorphic at
ρ ∈ {0, 1, λ, t,∞} if Res(θ, ρ) = 0. Each pair has at most one point with vanishing residual
part, because the singular spectral curve has at most one singular (nodal) point.

Lemma 5.2. The forgetful map
f : H → Hpairs

which forgets the parabolic structure, is the blowup at the locus H formed by pairs (E, θ) such
that θ is holomorphic at some point ρ ∈ {0, 1, λ, t,∞}. More precisely, f is one to one in
the complement H \ f−1(H) and f−1(E, θ) is isomorphic to P1 for every (E, θ) ∈ H.

Proof. If θ is nowhere-holomorphic, i.e., Res(θ, ρ) ̸= 0 for every ρ ∈ {0, 1, λ, t,∞}, then the
parabolic structure is determined by the kernel of the residual part and the forgetful map is
one to one.

Now assume that Res(θ, ρ) = 0 for some ρ ∈ {0, 1, λ, t,∞} and we will show that the fiber
of the forgetful map is isomorphic to P1. Let

l(ρ) = l \ {lρ}

be the parabolic structure obtained by forgetting the direction over ρ and let (E, l(ρ), θ) be
the corresponding Higgs bundle over P1 with four marked points

Λρ = {t1, t2, t3, t4} = {0, 1, λ, t,∞} \ {ρ}.

The moduli space Bunµ(0) parametrizing parabolic vector bundles (E, l(ρ)) on (P1,Λρ) of
degree zero which are semistable with respect to weight µ =

(
1
2
, 1
2
, 1
2
, 1
2

)
is isomorphic to P1.

A stable point of Bunµ(0) has no automorphisms, besides trivial ones, then the fiber of f is
parametrized by the fifth parabolic direction lρ ∈ PEρ ≃ P1, as we want.

It remains to consider strictly semistable points in Bunµ(0), there are exactly four of them,
and each one is represented by three distinct quasi-parabolic structures giving the same S-
equivalence class in Bunµ(0), see Figure 4. To see this remember that either E = OP1 ⊕OP1

or E = OP1(1) ⊕ OP1(−1). Since these four strictly semistable points are permuted by
elementary transformations, we may assume that we are in one of the three cases shown
in Figure 4. Now, in the first two of them any Higgs field has vanishing determinant, and
finally we arrive in the last case where E = L1 ⊕ L2, Li ≃ OP1 ,

l1, l2 ⊂ L1 and l3, l4 ⊂ L2

and the Higgs field on (E, l(ρ)) writes as

θ =

(
0 a dx

(x−t1)(x−t2)

b dx
(x−t3)(x−t4)

0

)
.
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with a, b ∈ C∗. Adding the fifth parabolic direction lρ, if it does not lie in L1 neither in L2

then we may assume lρ =
(
1
1

)
, (E, l) has no automorphisms and the fiber f−1(E, θ) contains

a C∗ parametrized by

θc =

(
0 ca dx

(x−t1)(x−t2)

c−1b dx
(x−t3)(x−t4)

0

)
, c ∈ C∗.

It is worth noting that all the θc are equivalent in Hpairs because of the presence of auto-
morphisms in (E, l(ρ)), which are diagonal. To complete the fiber f−1(E, θ) we have to add
two points corresponding to either lρ ∈ L1 or lρ ∈ L2. This finishes the proof of the lemma.

□

Figure 4. Three S-equivalent parabolic structures giving a point in Bunµ(0).

It follows from BNR correspondence [3, Proposition 3.6] that the fiber of the Hitchin map
in the moduli spaceHpairs of pairs corresponds to the compactified Jacobian variety Pic

3
(Xs)

and the restriction of the forgetful map to det−1(s) gives a map, still denoted by

f : det−1(s)→ Pic
3
(Xs). (5.2)

To understand det−1(s) we need the following result.

Lemma 5.3. Assume that the spectral curve Xs has a nodal singularity at ρ ∈ {0, 1, λ, t,∞}.
There are bijective correspondences

(i) Pic3(Xs)↔ {(E, θ) ∈ Hpairs : det θ = s , θ is nowhere-holomorphic at ρ}
(ii) Pic

3
(Xs) \ Pic3(Xs)↔ {(E, θ) ∈ Hpairs : det θ = s , θ is holomorphic at ρ}

Proof. The proof follows from [6, Proposition 3.5].
□

In the case (i) of Lemma 5.3, any Higgs field θ is apparent with respect to the parabolic
direction over ρ, meaning that the parabolic direction lρ is an eigendirection of the constant

part of θ. For instance, assuming that lρ =

(
1
0

)
and ρ = 0, we can write

θ =

(
ax b
cx −ax

)
· dx
x

(5.3)
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for suitable regular functions a, b, c in a neighborhood of ρ, with b(ρ) ̸= 0, because θ is
nowhere-holomorphic at ρ. Since Xs is singular over ρ and then det θ vanishes at order two,
we conclude that c(ρ) = 0, showing that lρ is an eigendirection of the constant part of θ. It is
important to note that, after an elementary transformation centered in lρ, the transformed
Higgs field

θ′ =

(
ax bx
c −ax

)
· dx
x

(5.4)

becomes holomorphic at ρ. This discussion justifies the notation for Fhol and Fapp in the
next result.

Theorem 5.4. Assume that the spectral curve Xs has a nodal singularity at ρ ∈
{0, 1, λ, t,∞}. The corresponding singular fiber det−1(s) of the Hitchin map has two ir-
reducible components

det−1(s) = Fhol ∪ Fapp

which are isomorphic via any elementary transformation

(elemI)|Fhol
: Fhol → Fapp

where I ⊂ {0, 1, λ, t,∞} contains ρ and has even cardinality. Moreover:

(1) Each component is a desingularization of Pic3(Xs), then isomorphic to F, c.f. (5.1),
and the structure of P1-bundle in Fhol is given by

f |Fhol
: Fhol → X̃s ≃ Pic

3
(Xs) \ Pic3(Xs).

(2) The map f |Fapp : Fapp → Pic
3
(Xs) is a desingularization map. See Figure 5.

(3) The intersection Fhol ∩ Fapp is the union of the 0-section and the ∞-section of Fhol.
See Figure 6.

Proof. First, we identify Pic
3
(Xs) with the fiber of the Hitchin map

det : Hpairs → C2

and det−1(s) consists of f−1(Pic
3
(Xs)), where f is the forgetful map (5.2). It follows from

Lemmas 5.2 and 5.3 that det−1(s) has two irreducible components, the strict transform of
Pic

3
(Xs), which we call Fapp and the P1-bundle Fhol, which is the blowup at the locus{

(E, θ) ∈ Hpairs : det θ = s , θ is holomorphic at ρ
}
.

This last is a copy of the elliptic curve X̃s, because forgetting the parabolic direction over ρ
where θ is holomorphic, it can be identified with a fiber of the Hitchin map for moduli space
of (irreducible) pairs (E, θ) over P1 with four parabolic points

{0, 1, λ, t,∞} \ {ρ}.
We conclude that Fhol is a P1-bundle over X̃s.

The elementary transformation elemI : H → H is an isomorphism, c.f (2.3), and if I
contains ρ, elemI switches the components Fhol and Fapp, see the discussion involving (5.3)
and (5.4). In addition, f |Fapp : Fapp → Pic

3
(Xs) is a birational morphism which is an

isomorphism outside Fhol ∩ Fapp, and then f |Fapp is a desingularization map.
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We now study the intersection Fhol ∩ Fapp. Its restriction to each fiber

f−1(E, θ) ≃ P1 ⊂ Fhol

corresponds to parabolic Higgs bundles (E, l, θ) with θ holomorphic at ρ and apparent with
respect to the parabolic direction lρ. Adding the fact that Xs is nodal over ρ, we can see that
the constant part θρ of θ has exactly two distinct eigendirections, it is an invertible matrix
because otherwise Xs would have a singularity of order bigger than two over ρ. In order to
simplify notation, lets assume ρ = t, the other cases are similar. Any Higgs field in Fhol has
determinant

det θ = s · dx⊗2

x(x− 1)(x− λ)

where s ∈ C∗ is fixed and the constant part θt has determinant

det θt =
s

t(t− 1)(t− λ)

which does not depend on θ. Therefore the intersection Fhol∩Fapp is a union of two sections

σ0, σ∞ : X̃s → Fhol

where σ0 is formed by eigendirections corresponding to the eigenvalue
√

−s
t(t−1)(t−λ)

and σ∞

corresponds to −
√

−s
t(t−1)(t−λ)

.
□

Remark 5.5. Via BNR correspondence, elements of Fapp\Fhol correspond to line bundles
on the nodal spectral curve Xs, see Lemma 5.3 - (i).

We have seen that each irreducible component of det−1(s) is a resolution of Pic3(Xs). To
recover Pic

3
(Xs) using Fapp we must identify the 0-section and the ∞-section via the map

τ : σ0(X̃s)→ σ∞(X̃s)

which switches the two eigenvectors of the constant part of θ. See Figure 5.

Figure 5. Component Fapp.
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Remark 5.6. Here, we will see that τ consists of the translation OX̃s
(w+

ρ −w−
ρ ), recovering

Remark 5.1 from the modular point of view, in terms of elementary transformations on Higgs
fields.

On the one hand, it is more convenient to work with Fhol, instead of Fapp, because it
contains a natural structure of P1-bundle given by the forgetful map f , and the resolution
map is given by f ◦elemI : Fhol → Pic

3
(Xs). On the other hand, to recover the compactified

Jacobian via Fapp, we need to identify the sections σ0 and σ∞ gluing points in the same fiber
of the forgetful map f , meaning that each point

(E, θ) ∈ Pic
3
(Xs) \ Pic3(Xs) ≃ X̃s

has exactly two representatives σ0(E, θ) = (E, θ, lσ0) and σ∞(E, θ) = (E, θ, lσ∞) in Fapp,
corresponding to the choices of eigendirections of the constant part of θ.

Coming back to Fhol using the involution elemI : Fhol → Fapp, in order to obtain Pic
3
(Xs)

via Fhol the 0-section and the ∞-section must be identified via the map

ι := elemI ◦ τ ◦ elemI : σ0(X̃s)→ σ∞(X̃s) (5.5)

where I has even cardinality and contains ρ. We will show that this map corresponds to
multiplication by OX̃s

(w+
ρ − w−

ρ ). To do this, let us first identify the elliptic curve X̃s with
a fiber of the Hitchin map in the moduli space of pairs (E, θ) over P1 with four parabolic
points {0, 1, λ, t,∞} \ {ρ}, and also with its Jacobian via BNR correspondence

X̃s ∋ (E, θ)←→Mθ ∈ Pic(X̃s) ≃ X̃s.

There is a third identification for X̃s, for each θ with det θ = s, we identify X̃s with the curve
of eigenvectors of θ, and since θ is parabolic with respect to each one of the eigenvectors w+

ρ

and w−
ρ of its constant part at ρ, then the variation of Mθ under an elementary transformation

over I centered in w±
ρ , is given by [6, Proposition 2.3]. Using this proposition, we see that

the following diagram is commutative

σ0(X̃s)OO
σ0

ι // σ∞(X̃s)OO

σ∞

X̃s
OX̃s

(w+
ρ −w−

ρ )

// X̃s

.

⌟

Remark 5.7. The structure of P1-bundle of Fapp is obtained from Fhol via the isomorphism
elemI : Fhol → Fapp. Figure 6 shows a ruling of Fapp intersecting Fhol. The whole Hitchin
fiber Fapp ∪Fhol is a “twisted product” of an elliptic curve X̃s by a degenerate elliptic curve,
meaning that a P1 of the ruling of Fapp intersects two distinct P1’s of the ruling of Fhol

and the intersection agrees with the multiplication by OX̃s
(w+

ρ −w−
ρ ). The structure of this

Hitchin fiber has been recently addressed by C.T. Simpson in [20, Discussion], from the
topological point of view.

⌟
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Figure 6. Intersection of two components Fhol and Fapp.

6. Connections

Let Cνn = Cν(P1,Λn), n ≥ 5, denote the moduli space of logarithmic connections over P1

of degree zero with polar divisor Λn = t1 + · · · + tn supported on n distinct points, and
with prescribed eigenvalue vector ν = (ν1, . . . , νn) ∈ Cn. An element of it consists of an
isomorphism class (E,∇), where E is a rank two degree zero vector bundle over P1 endowed
with a logarithmic connection, i.e. a C-linear map

∇ : E −→ E ⊗ ωP1(Λn)

satisfying the Leibniz rule
∇(as) = s⊗ da+ a∇(s)

for (local) sections s of E and a of OP1 . In addition, ∇ is assumed to have vanishing trace
and its residue endomorphism Resti(∇) over a given parabolic point ti has ±νi as eigenvalues.

We suppose that the eigenvalue vector ν is generic, meaning that νi ̸= 0, ∀i, and∑
ϵiνi /∈ Z

for any choice of ϵi ∈ {±1}. From this, any connection is irreducible and the construction
of the moduli space does not depend of a weight vector giving a stability notion. The
moduli space Cνn is a smooth irreducible quasiprojective variety of dimension 2(n − 3), see
[13, 14]. Note that each connection ∇ on E defines a unique parabolic structure, by selecting
the eigenspace li ⊂ E|ti associated to νi; therefore, Cνn can equivalently be viewed as a
moduli space of parabolic connections (E,∇, l). If a parabolic vector bundle (E, l) admits a
connection like above, we say that it is ν-flat.

6.1. Foliation conjecture. It follows from the work of Simpson [19] that there is a decom-
position of Cνn obtained by looking at the limit of c · (E,∇, l) as c→ 0. It turns out that for
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each weight vector µ and for (E,∇, l) ∈ Cνn there exists a unique limit

(E, θ,q) = lim
c→0

c · (E,∇, l) ∈ Hµ(P1,Λn, 0)

in the moduli space of µ-semistable parabolic Higgs bundles, see also [16, Proposition 4.1].
This leads to an equivalence relation (depending on µ) by assuming that two points of Cνn
are equivalent if their limits are the same. We might equivalently consider the function

πµ : Cνn → Hµ(P1,Λn, 0)

(E,∇, l) 7→ lim
c→0

c · (E,∇, l)

and the decomposition of Cνn given by fibers of πµ. The foliation conjecture [19, Question
7.4], in this case, predicts that there is a Lagrangian (regular) foliation Fµ whose leaves are
closed and coincide with fibers of πµ. The Lagrangian property has already been proved by
Simpson in [19]. The whole conjecture has been proved in [16, Corollaries 5.7 and 6.2] for the
moduli space of connections over the four punctured projective line when the weight vector
is generic, and recently [12] deals with the five punctured projective line by assuming the
weight vector µ satisfies

∑
µi < 1, which lies in the unstable zone. For the unstable zone

we mean the locus of weight vectors µ such that any parabolic vector bundle is µ-unstable.
It is known that there is a polytope ∆ ⊂ [0, 1]n consisting of weight vectors µ such that
Bunµ(P1,Λn, 0) is nonempty [2], so the unstable zone consists of the complement of ∆.

We will prove below that in the interior of ∆ the foliation conjecture is sensitive to weight
change, namely it is true for the central weight µc =

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
but it turns to be false

if µ =
(
3
4
, 1
4
, 1
4
, 1
4
, 1
4

)
. Even though the corresponding decompositions given by fibers of πµc

and πµ share a Zariski open subset.

6.2. Foliation FBun. We shall consider the non-separated scheme P of rank two undecom-
posable parabolic vector bundles over (P1,Λn) and the corresponding forgetful map Cνn → P ,
sending (E,∇, l) to (E, l).

Proposition 6.1. Each fiber of Cνn → P is isomorphic to the affine space Cn and they fit
together into a regular foliation FBun on Cνn.

Proof. It follows from [15, Proposition 3.1] that the following notions are equivalent

ν-flat⇔ undecomposable⇔ simple

where simple means that any automorphism of E preserving parabolic directions is scalar.
This implies that each fiber of Cνn → P is isomorphic to an affine space Cn. Now, given
(E,∇, l) in Cνn, by [15, Proposition 3.4] the underlying parabolic vector bundle is µ-stable
for a convenient choice of weight vector µ. The local chart Bunµ(P1,Λ, 0) of P is a smooth
irreducible projective variety and the restriction of Cνn → P to this chart gives a foliated
neighborhood of (E,∇, l) whose leaves coincide with fibers of Cνn → P . Varying the weight
vector µ in all possible chambers, these foliated neighborhoods fit together into a regular
foliation FBun on Cνn.

□

The foliation FBun of Proposition 6.1 plays an important role when the weight vector is
in the interior of the polytope ∆. In fact when (E, l) is µ-stable, the limit limc→0 c · (E,∇, l)
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consists of (E, 0, l), then if Uµ denotes the Zariski open subset formed by connections (E,∇, l)
with (E, l) ∈ Bunµ(P1,Λ, 0), the decomposition given by fibers of πµ coincides with FBun

when restricted to Uµ. In particular, we have the following result.

Proposition 6.2. Assume that µ lies in the stable zone, i.e. it is in the interior of ∆. If
the foliation conjecture is true, that is, if the fibers of πµ fit into a regular foliation Fµ then
Fµ = FBun.

Proof. By the discussion above, both foliations coincide on a nonempty open Zariski subset
Uµ, then they must coincide everywhere.

□

6.3. Variation with weights. In the next result we prove that given n ≥ 5 there is a
weight vector µ such that the foliation conjecture [19] is false in the case P1 minus n points.

Proposition 6.3. Let n ≥ 5. The foliation conjecture in the moduli space Cνn of logarithmic
connections over the n punctured projective line is false when µ = (µ1, . . . , µn), µn−2 =

n−2
n−1

and µi =
1

n−1
, ∀i ̸= n− 2.

Proof. Up to an automorphism of P1, we may assume tn−2 = 0, tn−1 = 1 and tn = ∞.
By performing one elementary transformation over the parabolic point tn−2, we go to the
democratic weight µ′ =

(
1

n−1
, . . . , 1

n−1

)
and the determinant line bundle becomes odd. By

[15, Proposition 3.7], the moduli space Bunµ′(P1,Λn,−1) is isomorphic to Pn−3, which gives
the same conclusion to Bunµ(P1,Λn, 0). Fibers of πµ over a point (E, l, 0) with (E, l) in
Bunµ(P1,Λn, 0) agree with leaves of FBun.

We now consider a ν-flat parabolic vector bundle (E, l) which does not belong to
Bunµ(P1,Λn, 0) and let’s investigate the fiber of πµ over this point. Let us assume that
E = OP1 ⊕OP1 , and parabolic directions are assumed to be

lt1 =

(
u
1

)
, lt2 = · · · = ltn−3 = l0 =

(
0
1

)
, l1 =

(
1
1

)
, l∞ =

(
1
0

)
.

The parabolic structure is actually determined by u ∈ C, so we denote by (E, lu) the corre-
sponding parabolic vector bundle. Note that the embedding OP1 → E corresponding to the
second factor is a destabilizing subbundle, which makes (E, lu) µ-unstable. Let us denote
by Cn−3

u the space of connections over (E, lu). By [15, Section 5.1], this space is formed by
connections ∇ = ∇0 + a1θ1 + · · ·+ an−3θn−3, (a1, . . . , an−3) ∈ Cn−3

u , where

∇0 = d +

(
−ν0 0
ρ ν0

)
dx

x
+

(
−ν1 − ρ 2ν1 + ρ
−ρ ν1 + ρ

)
dx

x− 1
+

(
−νt1 2νt1u
0 νt1

)
dx

x− t1

+
n−3∑
i=2

(
−νti 0
0 νti

)
dx

x− ti
,with ρ = −

n−3∑
i=1

νti − ν0 − ν1 − ν∞

the Higgs fields are

Θ1 =

(
0 0

1− u 0

)
dx

x
+

(
u −u
u −u

)
dx

x− 1
+

(
−u u2

−1 u

)
dx

x− t1
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and

Θi =

(
0 0
1 0

)
dx

x
+

(
0 0
−1 0

)
dx

x− ti
, i = 2, . . . , n− 3.

Then we can take the gauge transformation rescaling by c in the second component

gc =

(
1 0
0 c

)
to get

lim
c→0

gc(c∇)g−1
c = θ(a1) =

(
0 β
0 0

)
where

β = (2ν1 + ρ− a1u)
dx

x− 1
+ (2νt1 + a1u

2)
dx

x− t1
.

When c goes to 0, the parabolic structure projects to (E,q) where

qt1 = q1 = q∞ =

(
1
0

)
, lt2 = · · · = ltn−3 = l0 =

(
0
1

)
and the limit Higgs bundle

(E, θ(a1),q) = lim
c→0

c · (E,∇, lu)

is stable with respect to the weight µ, indeed the destabilizing subbundle OP1 → E given by
the second factor is not invariant under θ(a1). We are not able to eliminate the parameter
a1 from θ(a1) using automorphisms of (E,q), so this computation shows that the leaf Cn−3

u

of FBun is not contracted by πµ. This implies that fibers of πµ and leaves of FBun do not
agree everywhere. In view of Proposition 6.2, we conclude that fibers of πµ do not fit into a
regular foliation on Cνn.

□

Our next result shows that, in the case n = 5, FBun can be realized as fibers of πµc , for
the central weight µc =

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
.

Theorem 6.4. The foliation conjecture in the moduli space Cν5 of logarithmic connections
over the five punctured sphere is true when µc =

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
.

Proof. Let (E,∇, l) be an element of Cν5 . It follows from [15, Corollary 3.3] that either
E = OP1(1)⊕OP1(−1) or E = OP1 ⊕OP1 .

The locus of fixed points by the C∗-action on the moduli space H of Higgs bundles is the
union of S, corresponding to (E, 0, l) with (E, l) µ-stable, and the 16 Hodge bundles Θi,
see Definition 4.4 and Theorem 4.5. A fiber of πµc over a point (E, 0, l) consists of a leaf of
FBun, so it remains to consider the other 16 points.

We will show that there are exactly 16 µ-unstable ν-flat parabolic vector bundles. Assum-
ing that (E, l) is µc-unstable, there exists a destabilizing subbundle L ⊂ E satisfying

−2 degL− m

2
+

5−m

2
< 0
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where m is the number of parabolic directions lying in L. This gives degL ∈ {−1, 0, 1}. If
degL = 1 the there is at least one parabolic direction in L and at least two parabolic direc-
tions outside L, otherwise (E, l) would be decomposable. Up to performing an elementary
transformation over these two parabolic directions outside L, we may assume that L has
degree zero and E = OP1 ⊕ OP1 . The same reasoning can be applied to the case where L
has degree −1, indeed here all parabolic directions must lie in L, we then apply an elemen-
tary transformation over two of them. Therefore we may assume that L has degree zero,
E = OP1⊕OP1 and exactly three parabolic directions lie in L (more than three implies (E, l)
undecomposable). We then arrive, up to elementary transformations, in the following case:
E = OP1 ⊕OP1 and

l0 = lλ = lt =

(
0
1

)
, l1 =

(
1
1

)
, l∞ =

(
1
0

)
. (6.1)

This implies that there are exactly 16 µ-unstable ν-flat parabolic vector bundles, they are
in the same orbit of the group El of elementary transformations.

The space of connections over the parabolic bundle (6.1) is formed by∇ = ∇0+a1θ1+a2θ2,
a1, a2 ∈ C, where

∇0 = d +

(
−ν0 0
ρ ν0

)
dx

x
+

(
−ν1 − ρ 2ν1 + ρ
−ρ ν1 + ρ

)
dx

x− 1

+

(
−νλ 0
0 νλ

)
dx

x− λ
+

(
−νt 0
0 νt

)
dx

x− t
,with ρ = −

∑
νi

the Higgs fields are

θ1 =

(
0 0
1 0

)
dx

x
+

(
0 0
−1 0

)
dx

x− λ

and

θ2 =

(
0 0
1 0

)
dx

x
+

(
0 0
−1 0

)
dx

x− t
.

Then the gauge transformation

gc =

(
1 0
0 c

)
gives

lim
c→0

gc(c∇)g−1
c = θ =

(
0 β
0 0

)
where

β = (2ν1 + ρ)
dx

x− 1
.

Note that using an automorphism of the projected parabolic vector bundle, we can eliminate
the constant 2ν1 + ρ from β. Indeed when c goes to 0, the parabolic structure projects to
(E,q) where

q0 = qλ = qt =

(
0
1

)
, l1 = l∞ =

(
1
0

)
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The conclusion is that the limit Higgs bundles limc→0 c · (E,∇, l) is one of the 16 Hodge
bundles. Therefore, any fiber of πµc coincides with a leaf of FBun. □
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