Mesoscopic Klein-Schwinger effect in graphene - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Physics Année : 2023

Mesoscopic Klein-Schwinger effect in graphene

A. Schmitt
  • Fonction : Auteur correspondant
  • PersonId : 1251322

Connectez-vous pour contacter l'auteur
T. Taniguchi
K. Watanabe
G. Fève
Jean-Marc Berroir
C. Voisin
  • Fonction : Auteur
J. Troost
E. Baudin
  • Fonction : Auteur correspondant
  • PersonId : 1254659

Connectez-vous pour contacter l'auteur

Résumé

Strong electric field annihilation by particle–antiparticle pair creation, also known as the Schwinger effect, is a non-perturbative prediction of quantum electrodynamics. Its experimental demonstration remains elusive, as threshold electric fields are extremely strong and beyond current reach. Here, we propose a mesoscopic variant of the Schwinger effect in graphene, which hosts Dirac fermions with an approximate electron–hole symmetry. Using transport measurements, we report on universal one-dimensional Schwinger conductance at the pinchoff of ballistic graphene transistors. Strong pinchoff electric fields are concentrated within approximately 1 μm of the transistor’s drain and induce Schwinger electron–hole pair creation at saturation. This effect precedes a collective instability towards an ohmic Zener regime, which is rejected at twice the pinchoff voltage in long devices. These observations advance our understanding of current saturation limits in ballistic graphene and provide a direction for further quantum electrodynamic experiments in the laboratory.
Fichier principal
Vignette du fichier
Mesoscopic Klein-Schwinger effect in graphene.pdf (2.06 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Licence : CC BY - Paternité

Dates et versions

hal-04035853 , version 1 (15-11-2022)
hal-04035853 , version 2 (16-05-2023)

Licence

Paternité

Identifiants

Citer

A. Schmitt, P. Vallet, D. Mele, M. Rosticher, T. Taniguchi, et al.. Mesoscopic Klein-Schwinger effect in graphene. Nature Physics, 2023, 19 (6), pp.830-835. ⟨10.1038/s41567-023-01978-9⟩. ⟨hal-04035853v2⟩
136 Consultations
47 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More