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Mesoscopic Klein-Schwinger effect in 
graphene

A. Schmitt    1 , P. Vallet2, D. Mele    1,3, M. Rosticher1, T. Taniguchi    4, 
K. Watanabe    4, E. Bocquillon1,5, G. Fève1, J. M. Berroir1, C. Voisin1, J. Cayssol1,2, 
M. O. Goerbig6, J. Troost    1, E. Baudin    1  & B. Plaçais    1 

Strong electric field annihilation by particle–antiparticle pair creation, also 
known as the Schwinger effect, is a non-perturbative prediction of quantum 
electrodynamics. Its experimental demonstration remains elusive, as 
threshold electric fields are extremely strong and beyond current reach. 
Here, we propose a mesoscopic variant of the Schwinger effect in graphene, 
which hosts Dirac fermions with an approximate electron–hole symmetry. 
Using transport measurements, we report on universal one-dimensional 
Schwinger conductance at the pinchoff of ballistic graphene transistors. 
Strong pinchoff electric fields are concentrated within approximately 1 μm 
of the transistor’s drain and induce Schwinger electron–hole pair creation 
at saturation. This effect precedes a collective instability towards an ohmic 
Zener regime, which is rejected at twice the pinchoff voltage in long devices. 
These observations advance our understanding of current saturation 
limits in ballistic graphene and provide a direction for further quantum 
electrodynamic experiments in the laboratory.

A variety of important physical phenomena require a non-perturbative 
understanding of quantum field theory. This includes solitonic waves, 
but also several deeply quantum mechanical phenomena like the 
confinement of quarks in quantum chromodynamics. While many 
non-perturbative problems are notably hard to compute, some are 
within reach and yield accurate predictions. Among the most striking 
non-perturbative predictions of quantum field theory is the instability 
of an electric field under the creation of particle–antiparticle pairs. 
The Schwinger effect (SE) states that pairs are created, out of a false 
vacuum with an electric field, to minimize energy. It is a simple yet 
non-trivial and non-perturbative prediction of quantum electrodynam-
ics1–4. The pair-creation rate w per unit d-dimensional volume writes 

as the n-th order perturbation development w(E) ∝ ∑n≥1(
E
n
)

d+1
2 e−π

nES
E  

(see prefactors in ref. 4 and Supplementary Discussion Section I), where 
E is the electric field and ES = Δ2

S/eℏc = 1.32 1018 Vm−1 (with e the 

elementary charge, c the speed of light and ℏ the reduced Planck con-
stant), called the Schwinger field, corresponds to the electron-mass 
energy ΔS = mc2 = 511 keV, 2ΔS being the threshold energy needed to 
create an electron–positron pair at a characteristic length-scale given 
by the Compton length λC = hc/ΔS. Large efforts have been devoted to 
produce such extremely strong electric fields in the laboratory to check 
this prediction explicitly5. Unfortunately, the attempts to observe the 
SE in the last decades have not yet met with success.

With the advent of graphene, a novel playground for the study of 
relativistic effects has been opened in the completely different frame-
work of condensed matter physics6–11. In such a mesoscopic variant, 
electron–positron pairs are substituted by electron–hole pairs, speed 
of light c by the Fermi velocity vF ≃ 106 m s−1, and the rest energy by a 
bandgap (Interpretation of the Schwinger voltage). While graphene is 
intrinsically gapless, we show below that an effective gap is provided 
for one-dimensional (1D) transport. Our experiments point out that 
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h
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1 − e−π
ES
E

) (1)

IS = 4V ln( 1

1 − e−π
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V

) × gsgv
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h

with VS = ΛES = Λ
Δ2
S
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(2)

GS = 4[
πVS

V

eπ
VS
V − 1

+ ln( 1

1 − e−π
VS
V

)] × gsgv
e2
h

(3)

≈ 1.20 ( V
0.62VS

− 1) × gsgv
e2
h

(VC = 0.62VS ≲ V ≲ 2VS)
(4)

where V is the total bias and VS the Schwinger voltage, product of the 

Schwinger field ES =
Δ2
S

eℏvF
 by the length Λ of the pair-creation domain. 

The differential conductance (equation 3) possesses an inflection point 
at V = 1.22 VS, supporting an affine approximation given by equation (4)  
and characterized by a critical voltage VC = 0.62 VS and a zero-bias 
extrapolate − G0 stemming from a quantized pair conductance 

G0/gsgv = 2 × 0.60 e2

h
 (per spin and valley), with the prefactor 2 as a tag 

for pair dissociation. The Schwinger conductance (equation 3) is plot-
ted in Fig. 1b for 1D graphene, where gs = gv = 2 (solid red line), includ-
ing the affine approximation (dotted black line for equation (4))  
with G0 = 0.186 mS. Also shown in the figure is the conductance 

G∗
S = 4gsgv

e2

h
(1 + πVS

V
) e−π

VS
V  (dash-dotted blue line) calculated with 

the Schwinger rate (equation 1) truncated to its first n = 1 term; the 
truncated variant deviates from the full Schwinger conductance for 
V/VS ≳ 1.5 and GS ≳ 0.2 mS. Comparison of massive 1D and 2D Schwinger 
conductances, as well as that of three-dimensional Schwinger and 
the non-relativistic Fowler–Nordheim mechanism, are contrasted as 
discussed in Supplementary Discussion Section I.

Measurements are performed at room temperature in a series 
of six hBN-encapsulated single-layer graphene transistors deposited 
on local backgates, made of graphite for devices GrS1–3 and gold for 
devices AuS1–3, and equipped with high-transparency edge contacts 
(Methods and Supplementary Table I). As explained below (Klein col-
limation junction), high mobilities μ ≳ 10 m2 V−1 s−1, large dimensions 
(L, W) ≳ 10 μm, high doping ns and small-gate dielectric thicknesses 
thBN ≲ 100 nm, are key ingredients for observing the SE. High mobility 
provides current saturation at low bias Vsat < Vg, whereas high doping 
and long channels are needed to reject the Zener channel instability at 
a large bias VZ > Vg. The SE is visible in the bias window [Vsat, VZ] where 
Klein collimation is effective, at a Schwinger voltage VS ≈ Vg controlled 
by the channel doping ns and dielectric thickness thBN. Data reported 
below refer mostly to the representative GrS3 sample, leaving the full 
sample series description for Supplementary Discussion Section IV.

Klein collimation junction
Prior to discussing the SE in the next section, it is worth understanding 
the electric field profile it stems from, and the current saturation 
mechanism. We show in Fig. 2a the high-bias current-voltage (I-V) char-
acteristics of sample GrS3 (Fig. 2 caption), which exhibit prominent 
current saturation plateaus centred at the I(V = Vg) pinchoff line (dashed 
black line). The highlighted Vg = 3 V trace (thick turquoise line) illus-
trates the three main transport regimes: (1) the diffusive Drude regime 
for V ≲ Vsat, (2) the Klein collimation saturation regime for Vsat ≲ V ≲ VZ 

this effective energy scale ΔS is less than 0.2 eV, in which case the 
Schwinger fields ES = Δ2

S/eℏvF ≲ 6.107 Vm−1 are experimentally acces-
sible, while remaining smaller than breakdown fields of the embedding 
hexagonal boron nitride (hBN) dielectric12. Neutral single-layer gra-
phene, considered in refs. 8–10, corresponds to the gapless 
two-dimensional (2D) limit where ES = 0 so that the 2D Schwinger rate 

reduces to a superlinear J ∝ E
3
2 current density–field relation. This 

power law is indeed observed in single-layer graphene13, but alterna-
tively interpreted in terms of Zener tunnelling. More recently, the same 
dependence has been reported in twisted bilayer graphene hetero-
structures, where the SE develops on top of a saturation current14, with 
a sign reversal of the Hall effect as an additional signature. Our experi-
ment is motivated by the study of transport in bottom-gated (gate 
voltage Vg) single-layer graphene field-effect transistors, where pair 
creation is subject to a finite breakdown field at large doping. Most 
saliently, our experiment investigates the large bias regime where a 
giant Klein collimation establishes a quasi-1D transport characterized 
by a transport gap, and where the SE is accurately fitted by the 1D 
pair-creation rate with a finite Schwinger bandgap ΔS. It develops over 
a ballistic junction of length Λ < 1 μm set by the gate dielectric thickness 
(Interpretation of the Schwinger voltage), which builds up at current 
saturation. This saturation is due to a large drain-source voltage V that 
reduces the drain-gate voltage V − Vg, inducing a suppression of the 
electronic density nd at the drain below the channel density. The latter 
is given by the density at the source ns (and the chemical potential at 
the source μs), itself set by the gate voltage Vg. This so-called pinchoff 
generates a peak effect with a large local electric field prone to the 
ignition of Schwinger-pair creation, which shows up as the breakdown 
of the giant Klein collimation. As this situation differs from the canoni-
cal vacuum breakdown, we distinctively call it the Klein-Schwinger 
effect (KSE).

Let us detail theoretical prediction for the mesoscopic 1D SE, as 
sketched in Fig. 1a. Pair creation is monitored by the current gener-
ated across the junction upon dissociation in the large electric field. 
Starting from the 1D Schwinger rate in equation (1), and taking into 
account the factor 2 for pair dissociation, as well as spin and valley 
degeneracies gs and gv, the pair current IS and differential conductance 
GS can be written as:

VF
4
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Fig. 1 | Mesoscopic SE for massive 1D Dirac fermions. a, Sketch of the 1D SE 
across a graphene junction of length Λ and gap ΔS, defining a Schwinger field 
ES = Δ2

S/eℏvF and a junction Schwinger voltage VS = ESΛ. It leads to the 
proliferation of electron–hole pairs at a rate w1dΛ, with w1d given by equation (1) 
and a pair current given by equation (2). b, The differential conductance 
GS = ∂IS/∂V given by equation (3) for gs = gv = 2 (red line). It is well approximated by 

the affine approximation (equation 4), GS = 1.20 ( V
VC

− 1) × 4e2

h
, with VC = 0.62 VS 

(black dashed line). The truncated (first-order perturbation) Schwinger 

conductance (blue dash-dotted line), G∗
S = 4gsgv

e2

h
(1+ π VS

V
) e−π VS

V  (main text), 

substantially deviates from the full series (equation 3).
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and (3) the Zener regime for V ≳ VZ. As discussed in previous works15,16, 
the Zener effect corresponds to a field-induced bulk interband Klein 
tunnelling and is characterized by a doping- and bias-independent 
Zener channel conductivity (σZ ≈ 1 mS). It is subject to Pauli blockade 
leading up to a finite threshold voltage VZ = LEZ with a critical Zener 
field EZ ∝ μ2

s ∝ ns (ref. 16). Consequently the Zener voltage VZ ∝ LVg of 
long transistors is rejected well above Vg. This important feature char-
acterizes our device series (Supplementary Discussion Section IV), 
which differs from conventional devices17,18 where lower mobility and 
shorter channel lengths substitute saturation plateaus by a crossover 
between the Drude and Zener ohmic regimes.

In Supplementary Discussion Section VI we compare the 
pinchoff-induced exponential current saturation observed in the 
present Vg = Constant biasing mode, with the current obtained in the 
pinchoff-free drain-doping-compensated mode15. We also provide a 
simple 1D model of the electrostatic potential distribution in the chan-
nel to estimate the respective channel and collimation junction voltage 
drops in the pinchoff regime, thereby establishing the existence of a 
Klein collimation junction. Klein collimation is the semimetal variant 
of the pinchoff junction of metal oxide semiconductor field-effect 
transistors19. The exponential saturation is reminiscent of the collima-
tion effect of gate-defined long p–n junctions20, characterized by a 
transmission T(ky) ≈ exp(−πℏvFk2y/eEx), where ky = kF sinθ is the trans-
verse projection of the Fermi wave vector, θ is the angle of incidence 
and Ex = 2μs/Λ is the built-in in-plane electric field20–22. This p–n junction 
model, where electrons with a finite transverse momentum acquire a 
1D massive Dirac fermion character with a gap 2ℏvFky, provides a natural 
framework for the bias-induced giant Klein collimation reported here. 
In contrast to the p–n junction case, Klein collimation entails large 

Ex ≃ V/Λ and ℏvFky = eV sinθsat, leading to an exponentially vanishing 

transmission T(V) ≈ exp(−πV eΛ
ℏvF

sin2θsat). This giant Klein collimation 

effect turns an incident 2D electron gas into a 1D transmitted beam, 
leading to an emergent 1D transport regime of relativistic electrons at 
a velocity vF.

Current saturation is best characterized by the differential con-
ductance G = ∂I/∂V, whose scaling properties as a function of V/Vg are 
shown in Fig. 2b. The high-bias Zener regime corresponds to a 
doping-independent step-like increase to the Zener conductance 
GZ ≃ 1.5 mS at VZ ≃ 1.8 Vg. The saturation regime of interest in this work 
is characterized by a vanishing conductance in the [Vsat, VZ] window. 
Figure 2c is a semilog plot showing the exponential decay of the satura-
tion conductance above the saturation voltage Vsat. It is exemplified by 
the dashed blue-line fit of the representative Vg = 3 V data. This expo-
nential decay is observed over a broad doping range, and characterized 
by a doping-dependent saturation voltage Vsat according  
to the fitting law G = G(0)e−V/Vsat . The inset shows the Fermi  
energy dependence of Vsat, which obeys a linear law Vsat ≃ 3μs/e,  
implying that tunnelling-conductance suppression at pinchoff, 
G(Vg ∝ μ2

s ) ∝ e−μs/Constant, increases with doping. This property is con-
sistently observed in the full sample series (Supplementary Table 1) 
where eVsat/μs = 2.5–5. In the above p–n junction model, the saturation 
voltage Vsat = ℏvF/πeΛsin

2θsat is related to the collimation angle θsat.
An additional signature of the existence of a Klein junction is found 

in the transistor shot noise in Fig. 2d. Shot noise SI = 2eIℱ, where ℱ ≲ 1 
is the Fano factor, is deduced from the microwave current noise SI, 
which adds to the thermal noise SI = 4G(I)kBTe, where kB is the Boltzmann 
constant and Te is the electronic temperature. Here we take advantage 
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Fig. 2 | Room temperature ballistic pinchoff in sample GrS3 of dimensions 
L × W × thBN = 15 × 10 × 0.042 μm, mobility μ = 12m2 V−1 s−1 (gate 
capacitance Cg = 0.67 mFm−2) and contact resistance Rc = 120 Ω. a, Set of 
current–voltage characteristics after subtraction of contact voltage drop, 
including the representative Vg = 3 V trace (thick turquoise line). The pinchoff 
regime V = Vg is indicated by the dashed black line. b, Differential conductance 

scaling G [ V
Vg
] illustrating the steep decay of saturation conductance below 

pinchoff, and the sharp onset of Zener conductance at twice the pinchoff voltage. 
Inset is an artist’s view of the supposed carrier density distribution, characterized 
by a sharp drop over a collimation length Λ at the drain side. c, Semilog 

representation of conductance showing the exponential decay at current 

saturation, G = G(0)e−
V

Vsat (dotted blue line), with a doping-dependent 
saturation voltage Vsat ≃ 3 μs/e (dashed line in the inset). d, High-frequency 
(1–10 GHz) current noise measured in sample GrS2 at T = 10 K as a function of 
current. The sharp drop at pinchoff maps the vanishing of the thermal noise 
contribution SI = 4G(I)kBTe, where Te is the hot-electron temperature, according to 
the differential conductance dip at saturation. The residual noise (dashed blue 
line) is attributed to shot noise SI = 2eIF obeying the Fano factor 

F ≃ 0.04/√1+ (Isat/0.006)
2. e, Huge low-frequency (0.1–1 MHz) current noise 

peak at the onset of the Zener instability.
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of the conductance suppression at saturation, with G(I ≃ Isat) → 0 cor-
responding to the noise dips at the saturation current Isat in Fig. 2d, to 
extract the junction Fano factor ℱ(Isat) ≲ 0.04 (Supplementary Discus-
sion Section III). The presence of a shot noise, and the tiny value of the 
Fano factor, are strong indications of the presence of a ballistic junc-
tion23. Finally, the Zener threshold is reached upon increasing further 
the bias voltage; it entails an upheaval of the electric field distribution, 
as the electric field, initially confined over Λ in the Klein collimation 
regime, penetrates the full channel length L in the ohmic Zener regime. 
A signature of this collective instability of Klein collimation can be seen 
in the huge low-frequency current noise observed over the [VZ, 1.5 VZ] 
range in Fig. 2e.

The exponential current saturation, the presence of shot noise and 
the Zener electric field instability are three independent signatures of 
the giant Klein collimation effect and its collective instability towards 
a bulk Zener effect. The Klein collimation and its associated high-field 
region will act as a seed for the SE demonstrated below.

Evidence of a universal 1D Schwinger 
conductance
To highlight the small Schwinger-pair contribution in transport, we 
magnify in Fig. 3a the conductance-scaling plot of Fig. 2b. We focus 
first on the Vg = 3 V data (turquoise circles), for which the exponential 
tails of the Klein collimation (dotted blue line) and Zener (dotted green 
line) contributions are fully suppressed in a bias window [1.1 Vg, 1.7 Vg]. 
In this window, the measured conductance is solely governed by the 
Schwinger contribution, as evidenced by the fit of Vg = 3 V data with 

equation (3) taking VS = 1.4 Vg (thick turquoise line). The SE is also  
visible at lower doping, albeit partially obscured by a residual Klein 
tunnelling contribution. To extract the Schwinger contribution at arbi-
trary doping, we rely on the de-embedding of the Klein tunnelling 
contribution using a three-parameter fit G = GS(V/VS) + G(0)e−V/Vsat  
performed in the relevant range [Vsat, VZ]. The resulting pair conduct-
ance GS is displayed in Fig. 3b. It highlights the sharp transition (dotted 
black line) separating the Schwinger and Zener regimes, and reveals 
the Schwinger conductance fan-like scaling predicted by the affine 
approximation (equation 4) for a doping-dependent VS. Remarkably, 
the linear zero-bias extrapolate is a constant G0 ≃ 0.18 ± 0.02 mS, which 

is very close to the universal quantization G0 = 1.204e2

h
= 0.186mS   

for the 1D SE in graphene. The same procedure has been applied to the 
full sample series in Supplementary Figs. 6 and 7, which shows similar 
scaling with consistent values of G0. This observation of a robust con-
ductance quantization, in quantitative agreement with 1D Schwinger 
theory, is a parameter-free demonstration of the relevance of 1D SE, 
and of its ubiquity in high-mobility graphene transistors, which con-
stitutes the main finding of our work.

Interpretation of the Schwinger voltage
Going one step further, we analyse the dependence of the Schwinger 
voltage VS(ns, thBN) on doping ns and hBN thickness thBN, extracted from 
theoretical fits of pair-conductance data with (equation 3). We assume 
that VS(ns, thBN) = ES(ns)Λ(ns, thBN) with ES = Δ2

S(ns)/eℏvF for a Schwinger 
gap ΔS set by a collimation gap 2ℏvFkS at finite transverse momentum 
kS. In high-energy physics, the Schwinger threshold for 
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the full transistor series (Supplementary Fig. 7) where Schwinger-pair 
conductance scaling is reported with consistent values of G0. The slope increases 
with dielectric thickness (main text). The VS/Vg ratio is minimized in sample AuS2 
(L × W × thBN = 10.5 × 15 × 0.035 μm) and maximized in sample AuS3 
(L × W × thBN = 11.1 × 11.4 × 0.090 μm). d, Broad-range (V/VS ≲ 4) Schwinger 
conductance at low doping in AuS2 where VS/Vg ≃ 0.5 showing the quantitative 
agreement with equation (3) (solid lines) that deviates from the affine 
approximation (equation 4) (dotted lines), and from the truncated 
approximation G∗

S (dash-dotted lines).
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electron–positron creation in a vacuum (the absence of any other par-
ticles before pair creation) is set by a true spectral gap 2mc2. In con-
densed matter, the threshold for electron–hole creation can also be 
associated to a Pauli blocking effect related to the presence of other 
electrons filling graphene bands before pair creation. For the KSE, we 
assume heuristically that this threshold energy is set by 2ℏvFks, where 
ks is a typical transverse momentum for the fully populated Klein trans-
mitted electrons. In the absence of a fully fledged theory, and for the 
purpose of estimating the Klein collimation length Λ(ns, thBN), we use 
the Ansatz ΔS ≃ μs.

We plot in Fig. 3c the ratio VS/Vg(ns) for the full device series. We 
observe a linear doping dependence with a slope that increases with 
gate dielectric thickness thBN = 25–90 nm. As detailed in the Supple-
mentary Discussion Section V, these dependencies can be explained 

by Λ(ns,  thBN), according to the law Λ
thBN

Δ2
S

μ2s
= 4αg

VS

Vg
,  where 

αg =
e2

4πϵhBNε0ℏvF
= 0.70 (with ϵhBN = 3.1 at high field12) is the graphene 

fine structure constant. Assuming that ΔS ≃ μs, we can cast the measured 
VS

Vg
(thBN,ns) into the thBN power expansion Λ ≃ athBN + ξnst2hBN, where 

a = 1–2 is a geometrical factor depending on the details of the contact 
gate arrangements, and ξ ≃ 4 nm is a microscopic interaction length (ξ 
is the typical interaction radius per electron (for nst2hBN = 1) fitting in 
a junction length Λ ≈ thBN), quantifying the doping-induced dilation of 
the junction length. This Coulomb repulsion effect enhances VS, favour-
ing the visibility of the KSE at large doping (GrS3 data in Fig. 3c), up to 
the limit where its onset exceeds VZ so that the SE becomes masked by 
the Zener instability (AuS3 data in Fig. 3c). The latter case prevails in 
thick-hBN samples, giving rise to extremely flat current saturation 
plateaus (Supplementary Fig. 4f). Conversely, the small VS/Vg ≃ 0.5 
ratio of thin-hBN samples (AuS2 data in Fig. 3c), allows for investigating 
conductance over an extended bias range V/VS ≲ 4. The doping and 
hBN-thickness dependencies of the ratio VS/Vg, which contrast with the 
constant VZ/Vg, support our interpretation of the SE as the intrinsic 
breakdown mechanism of Klein collimation, rather than a precursor 
of the extrinsic (length-dependent) collective Zener instability.

We conclude our experimental report by analysing the extended 
Schwinger conductance regime in the AuS2 data, which are plotted in 
Fig. 3d. The accessible experimental range of Schwinger conductance 
(GS ≲ 0.6 mS) exceeds the validity domain (GS ≲ 0.2 mS) of the affine 
approximation (4), unveiling the sublinearities involved in equation 
(3) (solid lines). Experimental data are in excellent agreement with the 
full non-perturbative 1D Schwinger prediction, substantially deviating 
from the affine approximation (dotted lines), and strongly deviating 
from the truncated-rate 1D Schwinger conductance G∗

S (dash-dotted 
lines). This observation constitutes complementary evidence of the 
relevance of the Schwinger theory3.

The demonstration of the SE in an effective field theoretical 1 + 1D 
system is, to our knowledge, the first of its kind and a confirmation of 
a crucial prediction of quantum electrodynamic field theory. It fulfils 
the promise of using graphene to emulate quantum electrodynamics24, 
specifically here in its strong field sector. The use of condensed matter 
analogues has already proven fruitful in cosmology25, in particular with 
the observation of vortex formation in neutron-irradiated superfluid 
He-3 as an analogue of cosmological defect formation26, or that of the 
analogue of black hole Hawking radiation27, as well as in the understand-
ing of energy renormalization via Lorentz boosts28.

Our experiment shows the ability of giant Klein collimation to 
generate large local electric fields. This opens a way for exploration of 
the SE in different systems, like the massive Dirac fermions in bilayer 
graphene11, or the massless fermions in three-dimensional Weyl or 
Dirac semimetals29. In this respect, theoretical challenges remain con-
cerning the modelling of strongly out-of-equilibrium collimation 
and the emergence of the Schwinger gap. Our experiment also shows 
that prominent current saturations, with large saturation velocities, 

can be obtained in gapless graphene. On the application side, the 
understanding of the Klein-Schwinger mechanism turns out to be the 
key for the optimization of large voltage gain A = ∂V/∂Vg = Gm/G (with 
Gm the transconductance, see Supplementary Fig. 2) in high-mobility 
graphene transistors, which is tunable from A ≈ 10 in thin-hBN AuS2 to 
A ≈ 100 in thick-hBN AuS3 according to the VS/Vg ratio (Supplementary 
Table 1). Our work thus describes the implementation of a fully relativ-
istic Klein-Schwinger field-effect transistor showing large saturation 
currents and voltage gain.

Finally, one may attempt to go deeper in the condensed matter 
analogy of quantum electrodynamics by investigating other mani-
festations of the SE, like the full counting statistics of pair creation, 
or the vacuum polarization3 that is a precursor of pair creation. This 
raises the question of the dynamics of Schwinger-pair creation, which 
is an open field that can be investigated by dynamical transport and 
electromagnetic radiation spectroscopy.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information, details of author contri-
butions and competing interests, and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-023-01978-9.
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Methods
Fabrication of ballistic graphene transistors
The hexagonal boron nitride encapsulated graphene heterostructures 
are fabricated with the standard pick-up and stamping technique, 
using a polydimethylsiloxane/ polypropylenecarbonate stamp30. The 
gate is first fabricated on a high-resistivity Si substrate covered by 
285 nm SiO2. The gate electrode is either a thin exfoliated graphite 
flake (thickness ≲ 15 nm) or a prepatterned gold pad (thickness 70 nm) 
designed by laser lithography and Cr/Au metallization. Deposition 
of the heterostructure on the backgate is followed by acetone clean-
ing of the stamp residues, Raman spatial mapping and atomic force 
microscopy characterization of the stack. Graphene edge contacts are 
then defined by means of laser lithography and reactive ion etching, 
securing low contact resistance ≲ 1 kΩ μm. Finally, metallic contacts to 
the graphene channel are designed with a Cr/Au Joule evaporation that 
also embeds the transistor in a coplanar waveguide geometry suited 
for cryogenic probe station microwave and noise characterization. 
The large transistor dimensions L, W ≳ 10 μm secure moderate chan-
nel electric field E ≈ V/L ≲ 106 V m−1 up to the metal oxide semiconduc-
tor field-effect transistor pinchoff at V = Vg, while their high mobility 
μ ≳ 6 m2 V−1 s−1 at room temperature, and μ ≳ 35 m2 V−1 s−1 at 10 K, secures 
ballistic transport in the channel.

Radio-frequency transport and noise measurement
Characterization of the ballistic graphene transistors is performed in 
a cryogenic probe station adapted to radio-frequency measurements 
up to 67 GHz. The d.c. measurements are performed using a Keithley 
2612 voltage source to apply gate and bias. Noise measurements are 
enabled by the use of a Tektronix DPO71604C ultrafast oscilloscope for 
measurements up to 16 GHz. The high-frequency signal coming from 
the device is amplified by a CITCRYO1-12D Caltech low noise ampli-
fier in the 1–10 GHz band, whose noise and gain have been calibrated 
against the thermal noise of a 50 Ω calibration resistance measured 
at various temperatures between 10 K and 300 K in the probe station. 
For low-frequency noise measurements in the 0.1–1 MHz band, an NF 
Corporation amplifier (SA-220F5) is used.
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