Generalized parameter estimation-based observers: Application to power systems and chemical–biological reactors
Résumé
In this paper we propose a new state observer design technique for nonlinear systems. It consists of an extension of the recently introduced parameter estimation-based observer, which is applicable for systems verifying a particular algebraic constraint. In contrast to the previous observer, the new one avoids the need of implementing an open loop integration that may stymie its practical application. We give two versions of this observer, one that ensures asymptotic convergence and the second one that achieves convergence in finite time. In both cases, the required excitation conditions are strictly weaker than the classical persistent of excitation assumption. It is shown that the proposed technique is applicable to the practically important examples of multimachine power systems and chemical–biological reactors.