Theories of real addition with and without a predicate for integers - Archive ouverte HAL
Article Dans Une Revue Logical Methods in Computer Science Année : 2021

Theories of real addition with and without a predicate for integers

Résumé

We show that it is decidable whether or not a relation on the reals definable in the structure $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$ can be defined in the structure $\langle \mathbb{R}, +,<, 1 \rangle$. This result is achieved by obtaining a topological characterization of $\langle \mathbb{R}, +,<, 1 \rangle$-definable relations in the family of $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$-definable relations and then by following Muchnik's approach of showing that the characterization of the relation $X$ can be expressed in the logic of $\langle \mathbb{R}, +,<,1, X \rangle$. The above characterization allows us to prove that there is no intermediate structure between $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$ and $\langle \mathbb{R}, +,<, 1 \rangle$. We also show that a $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$-definable relation is $\langle \mathbb{R}, +,<, 1 \rangle$-definable if and only if its intersection with every $\langle \mathbb{R}, +,<, 1 \rangle$-definable line is $\langle \mathbb{R}, +,<, 1 \rangle$-definable. This gives a noneffective but simple characterization of $\langle \mathbb{R}, +,<, 1 \rangle$-definable relations.

Dates et versions

hal-04030870 , version 1 (15-03-2023)

Identifiants

Citer

Alexis Bès, Christian Choffrut. Theories of real addition with and without a predicate for integers. Logical Methods in Computer Science, 2021, ⟨10.23638/LMCS-17(2:18)2021⟩. ⟨hal-04030870⟩
11 Consultations
0 Téléchargements

Altmetric

Partager

More