Pré-Publication, Document De Travail Année : 2023

Asymptotic properties of AD(1, n) model and its maximum likelihood estimator

Résumé

This paper deals with the problem of global parameter estimation of affine diffusions in R+ × R n denoted by AD(1, n) where n is a positive integer which is a subclass of affine diffusions introduced by Duffie et al in [14]. The AD(1, n) model can be applied to the pricing of bond and stock options, which is illustrated for the Vasicek, Cox-Ingersoll-Ross and Heston models. Our first result is about the classification of AD(1, n) processes according to the subcritical, critical and supercritical cases. Then, we give the stationarity and the ergodicity theorems of this model and we establish asymptotic properties for the maximum likelihood estimator in both subcritical and a special supercritical cases.
Fichier principal
Vignette du fichier
AD-model.pdf (701.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04029180 , version 1 (14-03-2023)

Licence

Identifiants

Citer

Mohamed Ben Alaya, Houssem Dahbi, Hamdi Fathallah. Asymptotic properties of AD(1, n) model and its maximum likelihood estimator. 2023. ⟨hal-04029180⟩
56 Consultations
63 Téléchargements

Altmetric

Partager

More