A lower bound on the overhead of quantum error correction in low dimensions
Résumé
We show that a quantum architecture with an error correction procedure limited to geometrically local operations incurs an overhead that grows with the system size, even if arbitrary error-free classical computation is allowed. In particular, we prove that in order to operate a quantum error correcting code in 2D at a logical error rate of $\delta$, a space overhead of $\Omega(\sqrt{\log(1/\delta)})$ is needed for any constant depolarizing noise $p > 0$.
Domaines
Physique Quantique [quant-ph]Origine | Fichiers produits par l'(les) auteur(s) |
---|