Crossing exponent in the Brownian loop soup - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Crossing exponent in the Brownian loop soup

Résumé

We study the clusters of loops in a Brownian loop soup in some bounded two-dimensional domain with subcritical intensity θ ∈ (0, 1/2]. We obtain an exact expression for the asymptotic probability of the existence of a cluster crossing a given annulus of radii r and r s as r → 0 (s > fixed). Relying on this result, we then show that the probability for a macroscopic cluster to hit a given disc of radius r decays like | log r| −1+θ+o(1) as r → 0. Finally, we characterise the polar sets of clusters, i.e. sets that are not hit by the closure of any cluster, in terms of log α-capacity. This paper reveals a connection between the 1D and 2D Brownian loop soups. This connection in turn implies the existence of a second critical intensity θ = 1 that describes a phase transition in the percolative behaviour of large loops on a logarithmic scale targeting an interior point of the domain.
Fichier principal
Vignette du fichier
main_one-arm.pdf (731.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04021218 , version 1 (09-03-2023)
hal-04021218 , version 2 (11-10-2023)

Identifiants

Citer

Antoine Jégo, Titus Lupu, Wei Qian. Crossing exponent in the Brownian loop soup. 2023. ⟨hal-04021218v1⟩
28 Consultations
24 Téléchargements

Altmetric

Partager

More