User Preference and Performance using Tagging and Browsing for Image Labeling - Archive ouverte HAL Access content directly
Conference Papers Year : 2023

User Preference and Performance using Tagging and Browsing for Image Labeling

Abstract

Visual content must be labeled to facilitate navigation and retrieval, or provide ground truth data for supervised machine learning approaches. The efficiency of labeling techniques is crucial to produce numerous qualitative labels, but existing techniques remain sparsely evaluated. We systematically evaluate the efficiency of tagging and browsing tasks in relation to the number of images displayed, interaction modes, and the image visual complexity. Tagging consists in focusing on a single image to assign multiple labels (image-oriented strategy), and browsing in focusing on a single label to assign to multiple images (label-oriented strategy). In a first experiment, we focus on the nudges inducing participants to adopt one of the strategies (n=18). In a second experiment, we evaluate the efficiency of the strategies (n=24). Results suggest an image- oriented strategy (tagging task) leads to shorter annotation times, especially for complex images, and participants tend to adopt it regardless of the conditions they face.
Fichier principal
Vignette du fichier
main.pdf (1.61 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-04018549 , version 1 (07-03-2023)

Identifiers

Cite

Bruno Fruchard, Sylvain Malacria, Géry Casiez, Stéphane Huot. User Preference and Performance using Tagging and Browsing for Image Labeling. 2023 ACM CHI Conference on Human Factors in Computing Systems (CHI ’23), Apr 2023, Hambourg, Germany. ⟨10.1145/3544548.3580926⟩. ⟨hal-04018549⟩
109 View
103 Download

Altmetric

Share

Gmail Facebook X LinkedIn More