Speciation and Structures in Pt Surface Sites Stabilized by N-Heterocyclic Carbene Ligands Revealed by Dynamic Nuclear Polarization Enhanced Indirectly Detected 195 Pt NMR Spectroscopic Signatures and Fingerprint Analysis - Archive ouverte HAL
Article Dans Une Revue Journal of the American Chemical Society Année : 2022

Speciation and Structures in Pt Surface Sites Stabilized by N-Heterocyclic Carbene Ligands Revealed by Dynamic Nuclear Polarization Enhanced Indirectly Detected 195 Pt NMR Spectroscopic Signatures and Fingerprint Analysis

Résumé

N-Heterocyclic carbenes (NHCs) are widely used ligands in transition metal catalysis. Notably, they are increasingly encountered in heterogeneous systems. While a detailed knowledge of the possibly multiple metal environments would be essential to understand the activity of metal-NHC-based heterogeneous catalysts, only a few techniques currently have the ability to describe with atomic-resolution structures dispersed on a solid support. Here, we introduce a new DNP surface enhanced solid-state NMR approach that, in combination with advanced DFT calculations, allows the structure characterization of isolated silica-supported Pt-NHC sites. Notably, we demonstrate that the signal amplification provided by DNP in combination with fast magic angle spinning enables the implementation of sensitive 13 C-195 Pt correlation experiments. By exploiting 1 J(13 C-195 Pt) couplings, 2D NMR spectra were acquired revealing two types of Pt sites. For each of them, 1 J(13 C-195 Pt) values were determined as well as 195 Pt chemical shift tensor parameters. To interpret the NMR data, DFT calculations were performed on an extensive library of molecular Pt-NHC complexes. While one surface site was identified as a bis-NHC compound, the second site most likely contains a bidentate 1,5 cyclooctadiene ligand, pointing to various parallel grafting mechanisms. The methodology described here represents a new step forward in the atomic-level description of catalytically relevant surface metal-NHC complexes. In particular, it opens up innovative avenues for exploiting the spectral signature of platinum, one of the most widely used transition metals in catalysis, but whose use for solid-state NMR remains difficult. Our results also highlight the sensitivity of 195 Pt NMR parameters to slight structural changes.

Domaines

Chimie
Fichier principal
Vignette du fichier
J-HMQC manuscript revision_FINAL.pdf (3.45 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04016873 , version 1 (06-03-2023)

Identifiants

Citer

Zhuoran Wang, Laura Völker, Thomas Robinson, Nicolas Kaeffer, Georges Menzildjian, et al.. Speciation and Structures in Pt Surface Sites Stabilized by N-Heterocyclic Carbene Ligands Revealed by Dynamic Nuclear Polarization Enhanced Indirectly Detected 195 Pt NMR Spectroscopic Signatures and Fingerprint Analysis. Journal of the American Chemical Society, 2022, 144 (47), pp.21530-21543. ⟨10.1021/jacs.2c08300⟩. ⟨hal-04016873⟩
43 Consultations
281 Téléchargements

Altmetric

Partager

More