When stakes are high: balancing accuracy and transparency with Model-Agnostic Interpretable Data-driven suRRogates - Archive ouverte HAL
Article Dans Une Revue Expert Systems with Applications Année : 2020

When stakes are high: balancing accuracy and transparency with Model-Agnostic Interpretable Data-driven suRRogates

Roel Henckaerts
  • Fonction : Auteur
  • PersonId : 1234135
Marie-Pier Côté
  • Fonction : Auteur

Résumé

Highly regulated industries, like banking and insurance, ask for transparent decision-making algorithms. At the same time, competitive markets are pushing for the use of complex black box models. We therefore present a procedure to develop a Model-Agnostic Interpretable Data-driven suRRogate (maidrr) suited for structured tabular data. Knowledge is extracted from a black box via partial dependence effects. These are used to perform smart feature engineering by grouping variable values. This results in a segmentation of the feature space with automatic variable selection. A transparent generalized linear model (GLM) is fit to the features in categorical format and their relevant interactions. We demonstrate our R package maidrr with a case study on general insurance claim frequency modeling for six publicly available datasets. Our maidrr GLM closely approximates a gradient boosting machine (GBM) black box and outperforms both a linear and tree surrogate as benchmarks.
Fichier principal
Vignette du fichier
2007.06894.pdf (1.21 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04015711 , version 1 (06-03-2023)

Identifiants

Citer

Roel Henckaerts, Katrien Antonio, Marie-Pier Côté. When stakes are high: balancing accuracy and transparency with Model-Agnostic Interpretable Data-driven suRRogates. Expert Systems with Applications, 2020, ⟨10.48550/arXiv.2007.06894⟩. ⟨hal-04015711⟩

Collections

CHAIRE-DIALOG
27 Consultations
51 Téléchargements

Altmetric

Partager

More