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aÉcole d’actuariat, Université Laval, Canada.
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Abstract

Highly regulated industries, like banking and insurance, ask for transparent decision-making
algorithms. At the same time, competitive markets are pushing for the use of complex black
box models. We therefore present a procedure to develop a Model-Agnostic Interpretable
Data-driven suRRogate (maidrr) suited for structured tabular data. Knowledge is extracted
from a black box via partial dependence effects. These are used to perform smart feature
engineering by grouping variable values. This results in a segmentation of the feature space
with automatic variable selection. A transparent generalized linear model (GLM) is fit to
the features in categorical format and their relevant interactions. We demonstrate our R
package maidrr with a case study on general insurance claim frequency modeling for six
publicly available datasets. Our maidrr GLM closely approximates a gradient boosting
machine (GBM) black box and outperforms both a linear and tree surrogate as benchmarks.

Key words: Compliance, Feature selection, GLM, Insurance, Segmentation, XAI

1 Introduction

The big data revolution opened the door to highly complex artificial intelligence (AI) technology
in search for top performance. However, at the same time, there is growing public awareness
for the issues of interpretability, explainability and fairness of AI systems (O’Neil, 2016). The
General Data Protection Regulation (GDPR, 2016) introduces “the right to an explanation” of
decision-making algorithms, thereby pushing for transparent communication on the underlying
rationale of the decisions. An explainable AI (XAI) algorithm enables human users to under-
stand, trust and manage its decisions (Gunning, 2017). Explainability is gaining attention in
many industries, such as automotive (Meteier et al., 2019), banking (Bracke et al., 2019), health-
care (Ahmad et al., 2018), insurance (OECD, 2020), manufacturing (Hrnjica and Softic, 2020)
and critical systems (Gade et al., 2019). Full transparency is essential for high-stakes decisions
with a big impact on a person’s life, such as medical diagnosis, insurance coverage, education
admission, loan applications, criminal justice, autonomous transportation and job recruitment.

A lack of algorithmic transparency can hinder AI implementations in business practice due to
regulatory compliance requirements (Arrieta et al., 2020). XAI is therefore especially important
in highly regulated industries with an extensive review of algorithms by supervisory authorities.
Examples from the financial sector include the key information documents (KIDs) for packaged
retail and insurance-based investment products (PRIIPs, 2014), detailed motivations for credit
actions under the Equal Credit Opportunity Act (ECOA, 1974) and filing requirements for
general insurance rates to the National Association of Insurance Commissioners (NAIC, 2012).
Our case study in Section 3 puts focus on general insurance pricing as one of the high-stakes
XAI application areas where transparent decision-making is essential due to strict regulations.
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A clear distinction regarding model explainability is made between interpretation techniques
ex-post and transparency ex-ante (Guidotti et al., 2018). On the one hand, a wide range of
interpretation techniques are available to aid users in the explainability of opaque models and
their predictions (Biecek, 2018). On the other hand, decision trees, rules and linear models
are transparent by design, meaning they are easily comprehensible for human users. In linear
models, the contribution (sign and strength) of feature xj to the prediction target y is directly
observable from the model coefficient βj (Doran et al., 2017). Furthermore, the output is simply
visualized in a decision table, see Figure 1. Huysmans et al. (2011) perform a user study on the
comprehensibility of several representation formats and show that decision tables outperform
trees and rules with respect to accuracy, response time, answer confidence and ease of use.

General formulation of a linear model:
E[y] = β0 + β1x1 + β2x2 + · · ·+ βpxp

Return (%) based on asset class and investment term:
E[return] = 2 + 4 assetstock + 3 termlong

asset term E[return]

bond short 2%
bond long 5%
stock short 6%
stock long 9%

Figure 1: An example of a linear model (left) and the corresponding decision table (right).

Surrogate models intend to copy the behavior of a complex system by capturing its essence
in a simpler format. This is related to the ideas of model compression (Bucilă et al., 2006),
mimic learning (Ba and Caruana, 2014) and distillation (Hinton et al., 2015). These approaches
transfer knowledge from a large/slow model into a compact/fast approximation, which can
easily be deployed in environments with stringent space and time requirements. The underlying
structure of the complex system is learned by using its predictions as labels for training the
surrogate. Within XAI applications, an interpretable surrogate is used to explain the complex
system. Global surrogates explain average model behavior for a given dataset (Molnar et al.,
2020). Local surrogates, such as LIME (Ribeiro et al., 2016), K-LIME (Hall et al., 2017), SHAP
(Lundberg and Lee, 2017), Anchors (Ribeiro et al., 2018) and SLIM (Hu et al., 2020), explain
individual predictions by an interpretable model in the vicinity of the observation of interest.

This paper presents a procedure to develop a global surrogate for a complex system, with the
goal of implementing the surrogate in production. The surrogate inherits the strengths of a
sophisticated black box algorithm, delivered in a simpler format that is easier to understand,
manage and implement. The resulting high degree of model transparency can boost AI business
applications, especially in highly regulated sectors such as banking and insurance. Our procedure
extracts knowledge from the complex system via ex-post interpretation techniques. Next, using
these insights, it performs smart feature engineering on the training data. In the end, an ex-ante
transparent surrogate is fit to the engineered training data. The surrogate closely approximates
the black box model such that it can be used as a substitute with explanations readily available.

We put forward the following three desirable properties. Firstly, a model-agnostic procedure
is preferred due to the ever increasing variety of black box algorithms. We rely on partial
dependence (PD) effects to extract knowledge from the black box, thereby covering a vast
amount of different model types (Friedman, 2001). Secondly, the resulting surrogate should be
interpretable, making it easy to comprehend and use by human users. We employ generalized
linear models (GLMs), formulated by Nelder and Wedderburn (1972). This versatile model class
covers a broad range of classification and regression models and allows to represent its output
as a decision table. GLMs are therefore widely used in for example the insurance industry.
Thirdly, a data-driven procedure avoids the need for ad hoc model choices. We fully automate
the transformation from black box to transparent surrogate via a cross-validation scheme.
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We introduce maidrr: a Model-Agnostic Interpretable Data-driven suRRogate procedure for a
black box developed on structured tabular data. The complete procedure is available in the open
source R package maidrr (Henckaerts, 2020). The rest of this paper is structured as follows.
Section 2 details the maidrr methodology. Section 3 shows an application to insurance claim
frequency modeling, where transparency is essential due to strict regulations. We demonstrate
that our maidrr surrogate GLM is able to approximate the performance of a black box closely,
while outperforming a linear and tree benchmark surrogate. Section 4 concludes this paper.

2 Methodology

We first give an overview of the process behind maidrr, schematized in Figure 2. Afterward, we
describe each step in details. The starting point is a black box that we want to transform into
a simpler and more comprehensible surrogate. We extract knowledge from the black box in the
form of partial dependence (PD) effects for all features involved. These PD effects, detailing the
relation between a feature and the target, are used to group values/levels within a feature via
dynamic programming (DP). A slightly different grouping approach is used for different types of
features. For continuous/ordinal features, only adjacent values may be binned together, whereas
any two levels within a nominal feature can be clustered. The binning/clustering via DP leads
to an optimal and reproducible grouping of feature levels, resulting in a full segmentation of the
feature space. After this step of feature engineering, a generalized linear model (GLM) is fit
to the segmented data with all features in a categorical format and their relevant interactions.
The end product is an interpretable surrogate which approximates the black box model.

Black box Knowledge Segmentation Surrogate

PD DP GLM

Figure 2: The maidrr process for transforming a black box algorithm into a transparent GLM.

Black box As a starting point, any black box model giving a prediction function fpred(x) for
features x ∈ Rp can be used. This property makes maidrr a model-agnostic procedure.

Knowledge A univariate partial dependence (PD) captures the marginal relation between a
feature xj , for j ∈ {1, . . . , p}, and the model predictions (Friedman, 2001). The PD effect f̄j(xj)
evaluates the prediction function fpred for a given value of feature xj , while averaging over n
observed values of the other features xi

−j for observation i ∈ {1, . . . , n}:

f̄j(xj) =
1

n

n∑
i=1

fpred(xj ,x
i
−j). (1)

The PD effect f̄j is used to group values/levels within feature xj , as a similar PD indicates a
similar relation to the prediction target. This grouping reduces the complexity of the feature
with a limited loss of information. For feature xj , let mj denote the unique number of observed
values and let xj,q denote its qth value for q ∈ {1, . . . ,mj}. We then define zj,q = f̄j(xj,q) as the
PD effect of feature xj evaluated in xj,q. The goal is now to group the values xj,q in kj groups
based on zj,q. This represents a one-dimensional clustering problem of zj,q for q ∈ {1, . . . ,mj}.
In theory, PDs can be misleading for correlated features and accumulated local effects (ALE)
serve as an alternative (Apley and Zhu, 2019). However, Appendix A compares the resulting
PDs and ALEs for highly correlated features, justifying the use of PDs for grouping purposes.
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Segmentation Wang and Song (2011) developed a dynamic programming (DP) algorithm for
optimal and reproducible one-dimensional clustering problems. Elements of an mj-dimensional
input vector are assigned to kj clusters by minimizing the within-cluster sum of squares, that is,
the sum of squared distances from each element to its corresponding cluster mean. This follows
the same spirit as the classical K-means algorithm (MacQueen, 1967), but the DP algorithm
guarantees reproducible and optimal groupings by progressively solving the sub-problem of clus-
tering u elements in v clusters with 1 ≤ u ≤ mj and 1 ≤ v ≤ kj . This algorithm is implemented
in the R package Ckmeans.1d.dp (Song, 2019) and allows for the inclusion of adjacency con-
straints in the clustering problem. We impose such constraints for continuous/ordinal features
in order to group adjacent values. Nominal features are clustered without adjacency constraints
such that any two levels can be grouped. The DP algorithm requires the specification of the
number of groups kj for feature xj . In theory, we can perform a p-dimensional grid search to
find the optimal kj for each feature xj with j ∈ {1, . . . , p}. However, this would cause the
computation time to grow exponentially with p, harming maidrr’s scalability. We propose a
penalized loss function to find the optimal number of groups kj .

Penalized loss function After grouping feature xj in kj groups, let z̃j,q represent the average
PD effect for the group to which xj,q belongs. We define a penalized loss function, which is to
be minimized to find the optimal kj from a set of values, as follows:

mj∑
q=1

wj,q (zj,q − z̃j,q)2 + λ log(kj). (2)

The first part of this loss function measures how well the PD effect is approximated by the
grouped variant as a weighted mean squared error (wMSE) over all unique values of feature xj .
The weight wj,q represents the proportion of observations that equal value xj,q for feature xj .
This forces the procedure to focus on closely approximating frequently occurring feature values
as opposed to rare cases. The second part of Eq. (2) measures the complexity by means of the
common logarithm of the number of groups kj . The penalty parameter λ acts as a bias-variance
trade-off. A low (high) value of λ allows for many (few) groups, resulting in an accurate (coarse)
approximation of the PD. Note that λ does not depend on j in Eq. (2), which is adequate because
the PD effects reside on the same scale, namely the scale of the predictions, see Eq. (1). The
original p-dimensional tuning problem in this way reduces to be one-dimensional over λ. The
optimal λ value is determined via cross-validation, as detailed in Paragraph Hyperparameters.

Surrogate Given a λ value, we minimize Eq. (2) for each of the features xj , resulting in a
full segmentation of the feature space. After this step of feature engineering based on black
box knowledge, we fit a transparent model to the original target and features in a categorical
format. Generalized linear models (GLMs) allow for the specification of a diverse set of target
distributions (Nelder and Wedderburn, 1972). This facilitates the application of maidrr to
classification tasks and many types of regression problems, for example linear, Poisson and
gamma regression. We refer to Appendix B for details on the GLM formulation. GLMs with
only categorical features lead to fixed-size decision tables, see Appendix C for an example.
Even with many features they remain transparent, fileable in a tabular format and easy to use
by business intermediaries, so the complexity of the GLM is not a concern. The high degree
of transparency, thanks to observable coefficients, allows intuitive model post-processing by
industry experts when necessary. GLMs are therefore attractive when transparency is essential,
they are for example the preferred pricing tool within the strictly regulated insurance industry.
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Feature interactions So far we focused on grouping features via their marginal PDs, but
interactions between features can play a major role in explaining the data. We first find a set of
relevant interactions in the black box model by considering their strength as measured via the
H-statistic (Friedman and Popescu, 2008). Then, the pure interaction effect between features xa
and xb is captured by subtracting both one-dimensional PDs from the two-dimensional PD:

f̄a,b(xa, xb) =
1

n

n∑
i=1

fpred(xa, xb,x
i
−a,−b) −

1

n

n∑
i=1

∑
`∈{a,b}

fpred(x`,x
i
−`). (3)

We define feature xa:b as the interaction containing all combinations of features xa and xb in
the original data. The DP algorithm clusters levels in xa:b that have similar f̄a,b(xa, xb) values,
without any adjacency constraints. Interactions represent a correction on top of the marginal
effects so we allow for maximum flexibility. Given a value of λ, we determine the number of
groups kab by minimizing the equivalent of Eq. (2) obtained by computing the first term with
Eq. (3). The grouped version of xa:b enters the surrogate GLM in a categorical format.

Hyperparameters Algorithm 1 details the full maidrr procedure with four input parameters:
λmarg, λintr, k and h. A distinct value of λ is advised for marginal and interaction effects, as
the PDs in Eq. (1) and (3) reside on different scales. Marginal PDs are expressed on the scale
of the predictions, whereas interaction PDs are expressed as a pure interaction effect. We tune
the λ’s via K-fold cross-validation by iterating over a grid of λ values and choosing the optimal
value that minimizes a loss function for the surrogate GLM predictions. This loss is computed
with regards to the original data and not the black box predictions, resulting in a data-driven
procedure. The tuning can be performed in two stages, first for λmarg and next for λintr, thereby
avoiding a two-dimensional grid search. We refer to Section 3.2.2 for more details. Automatic
feature selection is enabled as feature xj is excluded from the surrogate when kj = 1. The
hyperparameter k allows to specify a maximum number of groups for feature segmentation.
The hyperparameter h selects a set of relevant interactions by means of a cut-off on the realized
values of the black box’s H-statistic, thereby excluding unimportant interactions upfront.

Algorithm 1 maidrr

Input: data, fpred, λmarg, λintr, k and h
for j = 1 to p do

calculate the PD effect f̄j via Eq. (1)
apply the DP algorithm to feature xj with k∗j = arg min

kj∈{1,...,k}
Eq. (2) for λ = λmarg

xcj represents the grouped version of xj in categorical format with k∗j groups
end for
feature selection: F = {j | k∗j > 1}
upfront interaction selection: I = {(l,m) | l ∈ F and m ∈ F and H(xl, xm) ≥ h}
for all (a, b) in I do

calculate the PD effect f̄a,b via Eq. (3)
apply the DP algorithm to interaction (xa, xb) with k∗ab = arg min

kj∈{1,...,k}
Eq. (2) for λ = λintr

xca:b represents the grouped version of xa:b in categorical format with k∗ab groups
end for
interaction selection: I = I \ {(l,m) | k∗lm = 1}
fit a GLM to the target with features xcj for j ∈ F and interactions xca:b for (a, b) ∈ I
Output: surrogate GLM
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3 Case study for the insurance industry

In most jurisdictions, insurers are required by law to document their pricing or rating model to
the regulator. Determining a fair insurance quote is also high-stakes, as it can have a big impact
on a person’s life. This creates a clear need for transparency in the underlying decision-making
process. A crucial part of ratemaking is the accurate modeling of the number of claims reported
by a policyholder. We therefore apply maidrr to a general insurance claim frequency prediction
problem. Section 3.1 introduces the model setting and the datasets. Section 3.2 details the
model construction for the black box and the maidrr GLM surrogate. Section 3.3 evaluates the
performance of the GLM with respect to the black box against two benchmark surrogates.

3.1 Claim frequency modeling with insurance data

We analyze six motor third party liability (MTPL) insurance portfolios, which are available in
the R packages CASdatasets (Dutang and Charpentier, 2019) or maidrr (Henckaerts, 2020).
All datasets contain an MTPL portfolio followed over a period of one year, with the amount
of policyholders (n) and the number of features (p) detailed in Table 1. Each dataset holds a
collection of different types of risk features, for example the age of the policyholder (continuous),
the region of residence (nominal) and the type of insurance coverage (ordinal).

Table 1: Overview of the number of policyholders (n) and features (p) in the datasets*.

ausprivauto bemtpl freMPL freMTPL norauto pricingame

n 67,856 163,210 137,254 677,925 183,999 99,859
p 5 10 9 8 4 19
*The name of the dataset corresponds to its name in the R package.

We model the number of claims filed during a given period of exposure-to-risk, defined as the
fraction of the year for which the policyholder was covered by the insurance policy. Exposure is
vital information, as filing one claim during a single month of coverage represents a higher risk
than filing one claim during a full year. Table 2 shows the distribution of the number of claims
in the portfolios. Most policyholders do not file a claim, some file one claim and a small portion
files two or more claims. Such count data is often modeled via Poisson regression, a specific
form of GLM with a Poisson assumption for the target y and a logarithmic link function. In this
setting, the industry standard is to incorporate the logarithm of exposure t via an offset term:
ln(E[y]) = ln(t)+β0+

∑
j βjxj . This leads to E[y] = t×exp(β0+

∑
j βjxj), that is, predictions are

proportional to exposure and have a multiplicative structure: E[y] = t×exp(β0)×
∏

j exp(βjxj).

Table 2: Distribution of the number of claims in the portfolios.

0 1 2 3 4 5 6

ausprivauto 63,232 4333 271 18 2 0 0
bemtpl 144,936 16,539 1554 162 17 2 0
freMPL 106,577 26,068 4097 448 62 2 0
freMTPL 643,874 32,175 1784 82 7 2 1
norauto 175,555 8131 298 15 0 0 0
pricingame 87,213 11,232 1262 134 16 1 1
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3.2 Finding a transparent model by opening the black box

Section 3.2.1 describes the construction of a gradient boosting machine or GBM as black box.
Section 3.2.2 details the maidrr procedure to obtain a GLM surrogate and illustrates the auto-
matic feature selection and segmentation for several datasets.

3.2.1 GBM as black box

We opt for a gradient boosting machine or GBM (Friedman, 2001) as the black box to start from.
More specifically, we make use of stochastic gradient boosting (Friedman, 2002) as implemented
in the R package gbm (Greenwell et al., 2019). This choice is based on the good performance of
GBMs as discussed in related work (Henckaerts et al., 2020). Due to the model-agnostic set up
of maidrr, any model can be used as input, including deep neural networks.

We tune the number of trees T in the GBM via 5-fold cross-validation, see Table 3. Other
hyperparameters are fixed to a sensible value. Following Hastie et al. (2009, Section 10.11), we
use decision trees of depth two, which are able to model up to third-order interactions. Each
tree is built on randomly sampled data of size 0.75n and the learning rate is set to 0.01. To take
into account the distributional characteristics of the count data, we use the Poisson deviance as
loss function in the GBM tuning process. The Poisson deviance is defined as follows:

DPoi {y, fpred(x)} =
2

n

n∑
i=1

[
yi × ln

{
yi

fpred(xi)

}
− {yi − fpred(xi)}

]
. (4)

Table 3: Overview of the optimal number of trees (T ) in the GBM for the different datasets.

ausprivauto bemtpl freMPL freMTPL norauto pricingame

T 474 3214 1377 3216 793 1198

3.2.2 GLM surrogate via maidrr

We build a surrogate GLM to approximate the optimal GBM for each dataset. The function
maidrr::autotune (Henckaerts, 2020) implements a tuning procedure for Algorithm 1.

Algorithm 1 requires four input parameters: λmarg, λintr, k and h. The λ values determine the
granularity of the resulting segmentation and GLM. We define a search grid for both λ’s, ranging
from 10−10 to 1. This range is sufficiently wide for our application, as indicated by the optimal
values in Table 4. Tuning of the λ values is done in two stages. First, a grid search over λmarg

finds the optimal GLM with only marginal effects by running the “marginal” part of Algorithm 1.
Then, a grid search over λintr determines which interactions to include in that optimal GLM
by running the “interaction” part of Algorithm 1. This requires two one-dimensional grid
searches of length grid size instead of one two-dimensional search of length grid size2, thereby
saving computation time. The optimal λ values are determined by performing 5-fold cross-
validation on the resulting GLM with the Poisson deviance in Eq. (4) as loss function. The
value of h determines the set of interactions that are considered for inclusion in the GLM by
excluding meaningless interactions with a low H-statistic. This value is calculated automatically
to consider the minimal set of interactions for which the empirical distribution function of the
H-statistic exceeds 50%. The intent is to take into account the most important interactions
while still keeping the GLM simple. We set the maximum number of groups k = 15.
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Table 4: Overview of the optimal λmarg and λintr values for the different datasets.

ausprivauto bemtpl freMPL freMTPL norauto pricingame

λmarg 4.2× 10−5 4.2× 10−5 1.6× 10−4 1.3× 10−7 1.1× 10−5 2.0× 10−6

λintr 8.5× 10−6 4.1× 10−6 4.6× 10−5 3.1× 10−6 3.1× 10−5 2.8× 10−6

Figure 3 illustrates the automatic feature selection of maidrr for the bemtpl portfolio. Fig-
ure 3(a) shows feature importance scores according to the GBM and Figure 3(b) shows the
number of groups for each feature in function of λmarg. Important features, such as bm and
postcode, retain a higher number of groups for increasing values of λmarg. Levels of uninfor-
mative features, like use and sex, are quickly placed in one group, effectively excluding these
variables from the GLM. This is how maidrr performs automatic feature selection via the data-
driven tuning of λmarg.

use

sex

fleet

coverage

agec

fuel

power

ageph

postcode

bm

0.0% 10.0% 20.0% 30.0% 40.0%
Importance

(a) Feature importance in the optimal GBM
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(b) Number of groups in function of λmarg

Figure 3: Illustration of the automatic feature selection process in maidrr for bemtpl.

Figure 4 displays the resulting segmentation for two continuous features: vehicle power for
bemtpl in Figure 4(a) and vehicle age for pricingame in Figure 4(b). Both show the GBM
PD effect, where darker blue indicates a higher observation count in the portfolio. The features
are grouped into 8 and 9 bins respectively, indicated by the vertical lines. The bins are wide
wherever the PD effect is quite stable and narrow where the effect is steeper. We observe that
claim risk increases for increasing vehicle power, while it decreases for increasing vehicle age.

Figure 5 displays the resulting segmentation for three categorical features. Groups are indicated
by different plotting characters, with size proportional to the observation count in the portfo-
lio. Figure 5(a) shows that claim risk decreases with increasing age of the policyholder in the
ausprivauto portfolio. Due to similar PD effects, both levels containing the oldest policyhold-
ers are grouped together as well as both levels containing the people of working age. This results
in four age segments: youngest, young, working and older people. Figure 5(b) shows that claim
risk decreases for a decreasing driving distance limit in the norauto portfolio. The PD effects
are dissimilar enough not to be grouped together, so each level remains in a separate segment.
Figure 5(c) shows the PD effects and resulting grouping for vehicle makes in the norauto port-
folio. The 41 different makes are divided in 11 segments with {Mazda, Jeep} and {Lada, Unic,
Other} as the most and least risky segments respectively. Categorical features with many levels
are often hard to deal with in practice. Appendix D demonstrates how maidrr greatly reduces
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the complexity for geographical information in the bemtpl and pricingame portfolios.
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(b) pricingame: age of the vehicle in years

Figure 4: PD effect and the resulting segmentation for two continuous features. Groups are separated
by vertical lines and darker blue indicates a higher observation count in the portfolio.
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Figure 5: PD effect and the resulting segmentation for three categorical features. Groups are indicated
by plotting characters, with size proportional to the observation count in the portfolio.
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3.3 Evaluation of the GLM surrogate

This section evaluates the performance of the maidrr GLM surrogate based on three desiderata
listed in Guidotti et al. (2018, Section 3.2): accuracy, fidelity and interpretability. Section 3.3.1
evaluates accuracy since generating accurate predictions is very important for a model to remain
competitive and relevant in production. Section 3.3.2 evaluates fidelity as the extent to which the
surrogate is able to mimic the behavior of a black box. Section 3.3.3 evaluates interpretability
because the surrogate should be comprehensible and easy to use in practice. We benchmark our
GLM against two transparent surrogates: a decision tree (DT) and linear model (LM). Both
are fit with the original data as features and the GBM predictions as target (Molnar, 2020). We
restrict the maximum tree depth to four to keep the result comprehensible.

3.3.1 Accuracy

The goal of our maidrr GLM surrogate is to approximate a complex black box and replace
it in the production pipeline. In order to justify this substitution, it is vital that the GLM
results in accurate predictions with minimal accuracy loss compared to the black box. We
measure prediction accuracy for all models via the Poisson deviance from Eq. (4). With fsurro
and fgbm the surrogate and GBM prediction function, we assess the accuracy loss via percentage
differences as follows: ∆DPoi = 100×

(
DPoi{y, fsurro(x)}/DPoi{y, fgbm(x)} − 1

)
.

Table 5 shows the Poisson percentage differences ∆DPoi for the GLM, LM and DT surrogates
with respect to the GBM black box. Results are shown for each dataset separately and the last
column contains the average over all datasets. The maidrr GLM attains the lowest accuracy
loss and outperforms the benchmark surrogates on each dataset. The GLM’s accuracy loss stays
below 0.5% on four out of six datasets, with an average of 0.64% over all datasets. On average,
the GLM is 3 and 7.5 times as accurate as the DT and LM surrogates.

Table 5: Poisson percentage differences ∆DPoi for the different surrogate models.

ausprivauto bemtpl frempl fremtpl norauto pricingame avg.

GLM 0.10 0.49 1.80 0.92 0.03 0.48 0.64
LM 0.22 1.15 18.39 6.35 0.07 2.53 4.79
DT 0.25 1.68 4.82 2.66 0.28 2.13 1.97

3.3.2 Fidelity

This section investigates how closely the maidrr GLM mimics the behavior of the GBM black
box by assessing how well the surrogates replicate the GBM’s predictions.

The R2 measure represents the percentage of variance that the surrogate model is able to capture
from the black box. With µgbm the mean GBM prediction, the R2 ∈ [0, 1] is defined as follows:

R2 = 1−
∑n

i=1 {fsurro(xi)− fgbm(xi)}2∑n
i=1 {fgbm(xi)− µgbm}2

.

Furthermore, we also compute Pearson’s linear and Spearman’s rank correlation coefficients ρ
between the GBM and surrogate predictions. We average these coefficients to consolidate both
types of correlation in one number, but the results below also hold for each coefficient separately.
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Table 6 shows the R2 for the GLM, LM and DT surrogates on each dataset separately and
averaged over all datasets in the last column. The GLM ranks first in five datasets and second
in ausprivauto. The GLM captures more than 90% of variance on four out of six datasets,
with an average of 90% over all datasets. On average, the GLM captures an extra 12% and 15%
of variance compared to the DT and LM surrogates.

Table 6: R2 measure for the different surrogate models.

ausprivauto bemtpl frempl fremtpl norauto pricingame avg.

GLM 0.86 0.94 0.91 0.78 0.99 0.93 0.90
LM 0.89 0.83 0.62 0.30 0.95 0.88 0.75
DT 0.75 0.74 0.88 0.75 0.84 0.76 0.78

Table 7 shows the averaged ρ for the GLM, LM and DT surrogates on each dataset separately
and averaged over all datasets in the last column. The GLM ranks first in all datasets, thereby
outperforming both benchmark surrogates. The correlation between the GBM and GLM is at
least 95% on four out of six datasets, with an average of 95% over all datasets. On average, the
GLM’s correlation to the GBM is 12% and 9% higher compared to the DT and LM surrogates.

Table 7: Average correlation coefficient ρ for the different surrogate models.

ausprivauto bemtpl frempl fremtpl norauto pricingame avg.

GLM 0.95 0.97 0.91 0.92 0.99 0.97 0.95
LM 0.95 0.93 0.74 0.60 0.98 0.95 0.86
DT 0.86 0.83 0.75 0.78 0.91 0.87 0.83

In both Tables 6 and 7, the DT outperforms the LM on the frempl and fremtpl datasets while
the LM outperforms the DT on the remaining four datasets. This is driven by the fact that the
DT puts focus on interactions while the LM puts focus on marginal effects. Our maidrr GLM
combines both marginal and interaction effects, resulting in better performance overall.

We conclude that our GLM constructed with maidrr outperforms the benchmark DT and LM
surrogates when it comes to both prediction accuracy and mimicking the GBM’s underlying
behavior. Remember that the DT and LM are trained with the GBM’s predictions as target.
The maidrr procedure extracts knowledge from the GBM to perform smart feature engineering,
but afterwards the GLM is fit to the original target. The observation that the GLM is better at
mimicking the GBM compared to the benchmark surrogates is therefore especially interesting.

3.3.3 Interpretability

Global interpretations A GLM is globally interpretable as the model coefficients, relating
the features to the predictions, are easily observable. For example, the Poisson GLM with
logarithmic link function to model the number of claims for the norauto dataset has the following
structure and fitted coefficients:

ln (E[nclaims]) =− 2.40 + 0.54Maleno + 0.09Y oungyes

− 0.76DistLimit8000km − 0.62DistLimit12000km

− 0.51DistLimit16000km − 0.33DistLimit20000km − 0.20DistLimit30000km

− 0.17GeoRegionLow− & Low+ − 0.05GeoRegionMed− + 0.23GeoRegionHigh+

− 0.08DistLimit GeoRegion8000/12000/16000km High+ & nolimit Low−/Low+/Med−
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where Maleyes, Y oungno, DistLimitnolimit and GeoRegionMed+ & High− are the reference levels
captured by the intercept. These references are the levels which contain the highest number of
policyholders such that the intercept models the claim frequency of an “average” policyholder.
Taking the inverse link function, namely the exponential, on both sides results in a multiplicative
GLM prediction function with the following global interpretations:

• The predicted claim frequency for an older male policyholder without a driving distance
limit and living in the Med+ or High- geographical region equals 0.09 or exp(−2.40).

• Predictions are 72% higher for female policyholders compared to males as exp(0.54) =
1.72. Note: In 2012, the EU put forward rules on gender-neutral pricing in the insurance
industry such that gender is no longer allowed as a rating factor in a commercial tariff.

• As exp(0.09) = 1.09, predictions are 9% higher for young compared to old policyholders.

• For policyholders with a driving distance limit of 8, 12, 16, 20 and 30 thousand kilometers,
predictions respectively amount to 47%, 54%, 60%, 72% and 82% of those for someone
without a limit. There is a clear increasing trend of claim risk with the distance limit.

• Predictions for policyholders living in the Low or Med- geographical regions amount to re-
spectively 84% and 95% of those for the Med+/High- regions, whereas predictions increase
with 26% for those in the High+ region.

• The interaction between the distance limit and geographical region results in a negative
correction for policyholders with the most risky level of one of the features and a low-risk
level of the other. As exp(0.08) = 0.92, predictions are reduced by 8% for policyholders
living in the High+ region with a maximal distance limit of 16,000 kilometer and for those
with no distance limit which live in the Low-, Low+ or Med- region.

Our maidrr procedure outputs a GLM with all features in a categorical format such that the full
working regime of the GLM can be summarized in a decision table, see Appendix C. In practice,
such a tabular model is easy to represent and maintain in a spreadsheet with responsive filters.
Decision tables are very comprehensible for human users and outperform both trees and rules
in accuracy, response time, answer confidence and ease of use (Huysmans et al., 2011).

Local interpretations We now turn to explaining individual predictions for the three artifi-
cial instances in the bemtpl dataset listed in Table 8. Based on the GBM and GLM predictions,
these instances represent a high/medium/low risk profile. We want to assess how the features
influence the riskiness of each individual. Feature contributions in a GLM can be extracted via
the fitted coefficients, as implemented in maidrr::explain (Henckaerts, 2020). For comparison
purposes we use Shapley (1953) values to explain the GBM predictions, with the efficient im-
plementation of Štrumbelj and Kononenko (2010, 2014) available in the R package iml (Molnar
et al., 2018).

Figures 6(a), 6(b) and 6(c) show the Shapley values for the GBM prediction of each instance.
The sum of these values equals the difference between the instance prediction, shown in Table 8,
and the average GBM prediction of 0.1417. The presence of mainly positive/negative Shapley
values in Figure 6(a)/6(c) thus represents a high/low risk profile respectively. Figures 6(d), 6(e)
and 6(f) show the GLM’s feature contributions on the response scale after taking the inverse link
function, namely exp(βj) for feature xj in our Poisson GLMs with log link. The contributions
are multiplicative with respect to the baseline prediction of 0.13, as captured by the intercept,
and the gray dashed line indicates the point of “no contribution” at exp(0). Furthermore, the
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Table 8: Artificial instances in the bemtpl portfolio for which we explain the individual predictions.

high risk medium risk low risk

bm 7 4 1
postcode 11 91 55
ageph 27 45 66
power 96 66 26
fuel diesel gasoline gasoline
agec 1 8 15
coverage TPL TPL+ TPL++
fleet yes no no
sex female male male
use private work work

GBM 0.2847 0.1398 0.0502
GLM 0.3861 0.1231 0.0413

postcode=11

bm=7

ageph=27

agec=1

fuel=diesel

power=96

coverage=TPL

sex=female

use=private

fleet=yes

0.00 0.04 0.08
Shapley value

(a) GBM: high risk

bm=4

ageph=45

power=66

agec=8

fleet=no

sex=male

use=work

coverage=TPL+

fuel=gasoline

postcode=80

−0.02 −0.01 0.00 0.01
Shapley value

(b) GBM: medium risk

fleet=no

sex=male

use=work

coverage=TPL++

fuel=gasoline

bm=1

ageph=66

agec=17

postcode=55

power=26

−0.020−0.015−0.010−0.005 0.000
Shapley value

(c) GBM: low risk
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power=96
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Feature contributions

(d) GLM: high risk
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Figure 6: Explanations for the high (left), medium (middle) and low (right) risk instance predictions
from Table 8 in the GBM via Shapley values (top) and the GLM via β coefficients (bottom).

GLM allows to split the contributions over marginal effects and interactions with other features,
while 95% confidence intervals indicate the uncertainty associated with each contribution.

The GBM and GLM explanations are very similar. For example, Figures 6(a) and 6(d) attribute
this profile’s high risk to a residence in Brussels, young age, high bonus-malus level and driving
a new high-powered diesel vehicle. The interaction between the bonus-malus level and age of
the vehicle puts a negative correction on both positive marginal effects in the GLM, while the
other interactions have limited impact on the prediction. The GLMs show no contribution from
gender as this feature is not selected by maidrr, while it has negligibly small Shapley values in all
cases. An insurance rate is determined by the product of claim frequency and severity, such that
the contributions can be directly interpreted as a percentage premium/discount on the price.
Living in Brussels increases the baseline frequency, and thus the price, by almost 50% in the
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technical analysis for this dataset. One can assess the fairness of this penalty, possibly followed
by a manual adjustment to intervene in the decision-making process via expert judgment.

4 Conclusions

Decision-making algorithms in business practice can become highly complex in order to gain a
competitive advantage. However, transparency is a key requirement for any high-stakes decision
or for companies active in strictly regulated industries. To balance accuracy and explainability,
we present maidrr: a procedure to develop a Model-Agnostic Interpretable Data-driven suRRo-
gate for a complex system. The paper is accompanied by an R package in which the procedure
is implemented (Henckaerts, 2020). We apply maidrr to six real-life general insurance portfolios
for claim frequency prediction, with insurance pricing as an example of a high-stakes decision
in a strictly regulated industry. We thereby also put focus on a highly relevant count regression
problem, which is not often dealt with in classical machine learning. Our maidrr procedure
results in a surrogate GLM which closely approximates the performance of a black box GBM in
terms of accuracy and fidelity, while outperforming two benchmark surrogates. This allows to
substitute the GLM in the production pipeline with minimal performance loss. In the process,
maidrr automatically performs feature selection and segmentation, providing a possibly useful
by-product for customer or market segmentation applications.

Both global and local interpretations are easily extracted from our maidrr GLM. Explanations
only depend on the fitted coefficients, which are easily observable and presentable on the response
scale. This representation boosts the ability to understand the feature contributions on the scale
of interest and allows for manual intervention when deploying the model in practice. This gives
some important advantages to maidrr with respect to the following XAI goals (see Arrieta
et al., 2020, Table 1). 1) Trustworthiness: a GLM with only categorical features always acts
as intended since all the possible working regimes can be listed in a decision table of fixed
size. 2) Accessibility/Interactivity: manual post-processing of the model becomes very easy
and intuitive by tweaking the GLM coefficients. This allows users to intervene and be more
involved in the development and improvement of the model. 3) Fairness: the clear influence
of each feature allows for an ethical analysis of the model, which becomes especially important
for high-stakes decisions which influence people’s lives. In our insurance setting, it is important
that every policyholder receives a fair insurance quote. The direct interpretation of the feature
contributions as a penalty/discount to the baseline tariff further serves this cause. 4) Confidence:
the uncertainty of the contributions is quantifiable via confidence intervals such that the model’s
robustness, stability and reliability can be assessed. 5) Informativeness: contributions are split
across marginal effects and interactions of features, thereby increasing the amount of information
available to the user on the underlying decision of the model.

Our maidrr procedure combines the inherent interpretability of a GLM with the accurate ap-
proximation of a sophisticated black box. We therefore believe that maidrr can serve as a useful
tool in any situation where a competitive, yet transparent model is needed.
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A PD and ALE for correlated features

Figure 7 compares the PD and ALE for several vehicle characteristics in the pricingame dataset,
namely the weight, value, maximum speed, horsepower and age. Figure 7(a) shows that the
vehicle age is negatively correlated with the other characteristics while there is a strong positive
correlation between the weight, value, maximum speed and horsepower. Figures 7(b), 7(c), 7(d),
7(e) and 7(f) show the centered PD (in blue) and ALE (in red) for all the vehicle features. Both
effects are very similar for each of the features, especially in the ranges with high observation
counts as indicated by the black rugs on the x-axis. We observe some vertical shifts between
the PD and ALE in feature ranges with low observation counts. However, these vertical shifts
are not a problem for our maidrr procedure as we only use these effects to perform the feature
grouping. Furthermore, observation counts are taken into account as weights in the penalized
loss function of Eq. (2), further reducing the impact of these shifts on the obtained segmentation.
This justifies the use of PD effects for grouping, even when dealing with correlated features.
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Figure 7: Comparison of PD and ALE for correlated vehicle characteristics in the pricingame dataset.
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B GLM formulation

A GLM allows any distribution from the exponential family for the target of interest y. This
includes, among others, the normal, Bernoulli, Poisson and gamma distributions, making GLMs
a versatile modeling tool. Denoting by g(·) the link function, the structure of a GLM with all
features x in a categorical format is as follows:

g(E[y]) = `>β = β0 +

d∑
j=1

βj`j .

The d + 1 dimensional vector ` contains a 1 for the intercept β0 together with d dummy vari-
ables `j ∈ {0, 1}. A categorical feature x with m levels contains a reference level which is
captured by the intercept. The other m− 1 levels are coded via dummy variables to model the
differences between those levels and the reference level, captured by the coefficients βj .

C GLM in a tabular format

Table 9 shows part of the decision table for the norauto dataset, with the four lowest and
highest predictions indicated in italics and bold respectively. The three other parts for Male =
Yes & Young = No and Male = No & Young = Yes/No are not shown for space reasons.

Table 9: Part of the GLM predictions in a decision table for the norauto dataset.

Male Young DistLimit GeoRegion GLM prediction (%)

1 Yes Yes 8000 km Low- & Low+ 3.88
2 Yes Yes 8000 km Medium- 4.41
3 Yes Yes 8000 km Medium+ & High- 4.62
4 Yes Yes 8000 km High+ 5.36
5 Yes Yes 12000 km Low- & Low+ 4.47
6 Yes Yes 12000 km Medium- 5.08
7 Yes Yes 12000 km Medium+ & High- 5.32
8 Yes Yes 12000 km High+ 6.17
9 Yes Yes 16000 km Low- & Low+ 4.99
10 Yes Yes 16000 km Medium- 5.67
11 Yes Yes 16000 km Medium+ & High- 5.94
12 Yes Yes 16000 km High+ 6.89
13 Yes Yes 20000 km Low- & Low+ 5.94
14 Yes Yes 20000 km Medium- 6.75
15 Yes Yes 20000 km Medium+ & High- 7.07
16 Yes Yes 20000 km High+ 8.92
17 Yes Yes 30000 km Low- & Low+ 6.78
18 Yes Yes 30000 km Medium- 7.70
19 Yes Yes 30000 km Medium+ & High- 8.07
20 Yes Yes 30000 km High+ 10.18
21 Yes Yes no limit Low- & Low+ 7.63
22 Yes Yes no limit Medium- 8.67
23 Yes Yes no limit Medium+ & High- 9.87
24 Yes Yes no limit High+ 12.45
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D Geographical segmentation

Figure 8 shows the average PD effect for geographical regions where groups are indicated by
colors. Figure 8(a) shows the postal code areas on the map of Belgium with the initial 80
regions from the bemtpl portfolio segmented in 10 clusters. The capital Brussels in the center
of Belgium (red colored), together with other big cities (orange colored), are risky due to heavy
traffic in those densely populated areas. The rural regions in the northeast and south of Belgium
are less risky. Figure 8(b) shows the INSEE department code areas on the map of France with
the initial 96 regions from the pricingame portfolio segmented in 15 clusters. The capital Paris
and surrounding departments in the north of France (red/orange colored) are high-risk areas.
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Figure 8: Average PD effect for geographical regions where groups are indicated by colors.
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A. B. Arrieta, N. Dı́az-Rodŕıguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garćıa, S. Gil-
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