A VAE approach to sample multivariate extremes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

A VAE approach to sample multivariate extremes

Résumé

Rapidly generating accurate extremes from an observational dataset is crucial when seeking to estimate risks associated with the occurrence of future extremes which could be larger than those already observed. Many applications ranging from the occurrence of natural disasters to financial crashes are involved. This paper details a variational auto-encoder (VAE) approach for sampling multivariate extremes. The proposed architecture is based on the extreme value theory (EVT) and more particularly on the notion of multivariate functions with regular variations. Experiments conducted on synthetic datasets as well as on a dataset of discharge measurements along Danube river network illustrate the relevance of our approach.
Fichier principal
Vignette du fichier
ExtVAE_ICML2023.pdf (996.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04013214 , version 1 (03-03-2023)
hal-04013214 , version 2 (15-06-2023)

Identifiants

  • HAL Id : hal-04013214 , version 1

Citer

Nicolas Lafon, Philippe Naveau, Ronan Fablet. A VAE approach to sample multivariate extremes. 2023. ⟨hal-04013214v1⟩
315 Consultations
374 Téléchargements

Partager

More