A new approach to light bulb tricks: Disks in 4-manifolds - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

A new approach to light bulb tricks: Disks in 4-manifolds

Résumé

For a 4-manifold $M$ and a knot $k\colon\mathbb{S}^1\hookrightarrow\partial M$ with dual sphere $G\colon\mathbb{S}^2\hookrightarrow\partial M$, we compute the set $\mathbb{D}(M;k)$ of smooth isotopy classes of neat embeddings $\mathbb{D}^2\hookrightarrow M$ with boundary $k$, using an invariant going back to Dax. Moreover, we construct a group structure on $\mathbb{D}(M;k)$ and show that it is usually neither abelian nor finitely generated. We recover all previous results for isotopy classes of spheres with framed duals and relate the group $\mathbb{D}(M;k)$ to the mapping class group of $M$.

Dates et versions

hal-04008176 , version 1 (28-02-2023)

Identifiants

Citer

Danica Kosanović, Peter Teichner. A new approach to light bulb tricks: Disks in 4-manifolds. 2022. ⟨hal-04008176⟩
10 Consultations
0 Téléchargements

Altmetric

Partager

More