Inducing strong convergence of trajectories in dynamical systems associated to monotone inclusions with composite structure
Résumé
Zeros of the sum of a maximally monotone operator with a single-valued monotone one can be obtained as weak limits of trajectories of dynamical systems, for strong convergence demanding hypotheses being imposed. We extend an approach due to Attouch, Cominetti and coauthors, where zeros of maximally monotone operators are obtained as strong limits of trajectories of Tikhonov regularized dynamical systems, to forward-backward and forward-backward-forward dynamical systems whose trajectories strongly converge towards zeros of such sums of monotone operators under reasonable assumptions.