Multi-elemental and Strontium-Neodymium Isotopic Signatures in Charred Wood: Potential for Wood Provenance Studies - Archive ouverte HAL
Article Dans Une Revue International Journal of Wood Culture Année : 2023

Multi-elemental and Strontium-Neodymium Isotopic Signatures in Charred Wood: Potential for Wood Provenance Studies

Stéphane Ponton
Jean-Luc Dupouey
Julien Bouchez
Christophe Rose
  • Fonction : Auteur
  • PersonId : 1157515
Julien Ruelle
  • Fonction : Auteur
  • PersonId : 845138

Résumé

The chemical composition of the wood reflects the composition of the soil over which the corresponding tree has developed. Multi-elemental and isotopic signatures, which are characteristic of the soil and underlying rock substrates, are potentially powerful tools for determining wood provenance. These tracers are of special interest for charred archaeological wood because they circumvent some limitations of dendrochronological provenancing linked to tree-ring loss. However, thermal degradation may introduce a significant bias in wood chemical and isotopic analyses. This experimental study focused on the effects of carbonization temperature on three geochemical wood markers: elemental signatures and isotopic signatures of strontium and neodymium (86Sr/87Sr and 143Nd/144Nd, respectively). Wood specimens from a variety of oak trees and stand locations were pyrolyzed at four temperatures (ranging from 200°C to 800°C) and analyzed using ICP-MS and µ-XRF (X-ray fluorescence) spectroscopy for elemental composition and with multiple collection ICP-MS (MC-ICP-MS) for strontium (Sr) and neodymium (Nd) isotope composition. The concentration of mineral nutrients generally increased with temperature, but the magnitude of the enrichment depended on the element, wood compartment (sapwood vs. heartwood), and geological substrate. The concentrations of rubidium, strontium, manganese, magnesium, potassium, and, to a lesser extent, calcium, were minimally affected by temperature, wood compartment, and substrate. The ratios between the concentrations of these elements, as well as the 86Sr/87Sr and 143Nd/144Nd isotope ratios, were stable over the entire temperature range. However, only 86Sr/87Sr and selected elemental ratios (calcium or magnesium normalized to manganese) were successful for site discrimination. Therefore, our multi-tracer approach provides promising new information to determine the provenance of charred archaeological wood
Fichier principal
Vignette du fichier
ijwc-article-10.1163-27723194-bja10019.pdf (5.58 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04001076 , version 1 (22-02-2023)

Licence

Identifiants

Citer

Anna Imbert Štulc, Anne Poszwa, Stéphane Ponton, Jean-Luc Dupouey, Julien Bouchez, et al.. Multi-elemental and Strontium-Neodymium Isotopic Signatures in Charred Wood: Potential for Wood Provenance Studies. International Journal of Wood Culture, 2023, 3, ⟨10.1163/27723194-bja10019⟩. ⟨hal-04001076⟩
276 Consultations
108 Téléchargements

Altmetric

Partager

More