A Direttissimo Algorithm for Equidimensional Decomposition
Abstract
We describe a recursive algorithm that decomposes an algebraic set into locally closed equidimensional sets, i.e. sets which each have irreducible components of the same dimension. At the core of this algorithm, we combine ideas from the theory of triangular sets, a.k.a. regular chains, with Gröbner bases to encode and work with locally closed algebraic sets. Equipped with this, our algorithm avoids projections of the algebraic sets that are decomposed and certain genericity assumptions frequently made when decomposing polynomial systems, such as assumptions about Noether position. This makes it produce fine decompositions on more structured systems where ensuring genericity assumptions often destroys the structure of the system at hand. Practical experiments demonstrate its efficiency compared to state-of-the-art implementations.
Domains
Commutative Algebra [math.AC]Origin | Files produced by the author(s) |
---|---|
Licence |