Unlocking synergy in bimetallic catalysts by core–shell design - Archive ouverte HAL
Article Dans Une Revue Nature Materials Année : 2021

Unlocking synergy in bimetallic catalysts by core–shell design

Résumé

Extending the toolbox from mono- to bimetallic catalysts is key in realizing efficient chemical processes1. Traditionally, the performance of bimetallic catalysts featuring one active and one selective metal is optimized by varying the metal composition1,2,3, often resulting in a compromise between the catalytic properties of the two metals4,5,6. Here we show that by designing the atomic distribution of bimetallic Au–Pd nanocatalysts, we obtain a synergistic catalytic performance in the industrially relevant selective hydrogenation of butadiene. Our single-crystalline Au-core Pd-shell nanorods were up to 50 times more active than their alloyed and monometallic counterparts, while retaining high selectivity. We find a shell-thickness-dependent catalytic activity, indicating that not only the nature of the surface but also several subsurface layers play a crucial role in the catalytic performance, and rationalize this finding using density functional theory calculations. Our results open up an alternative avenue for the structural design of bimetallic catalysts.

Domaines

Chimie

Dates et versions

hal-03995585 , version 1 (18-02-2023)

Identifiants

Citer

Jessi van der Hoeven, Jelena Jelic, Liselotte Olthof, Giorgio Totarella, Relinde van Dijk-Moes, et al.. Unlocking synergy in bimetallic catalysts by core–shell design. Nature Materials, 2021, 20 (9), pp.1216-1220. ⟨10.1038/s41563-021-00996-3⟩. ⟨hal-03995585⟩
63 Consultations
0 Téléchargements

Altmetric

Partager

More