Multiplicative ergodic theorem for a non-irreducible random dynamical system - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Multiplicative ergodic theorem for a non-irreducible random dynamical system

Résumé

We study the asymptotic properties of the trajectories of a discrete-time random dynamical system in an infinite-dimensional Hilbert space. Under some natural assumptions on the model, we establish a multiplica-tive ergodic theorem with an exponential rate of convergence. The assumptions are satisfied for a large class of parabolic PDEs, including the 2D Navier–Stokes and complex Ginzburg–Landau equations perturbed by a non-degenerate bounded random kick force. As a consequence of this er-godic theorem, we derive some new results on the statistical properties of the trajectories of the underlying random dynamical system. In particular , we obtain large deviations principle for the occupation measures and the analyticity of the pressure function in a setting where the system is not irreducible. The proof relies on a refined version of the uniform Feller property combined with some contraction and bootstrap arguments.
Fichier principal
Vignette du fichier
paper-revised.pdf (406.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-03993050 , version 1 (28-01-2018)
hal-03993050 , version 2 (20-01-2020)
hal-03993050 , version 3 (16-03-2023)

Identifiants

Citer

Davit Martirosyan, Vahagn Nersesyan. Multiplicative ergodic theorem for a non-irreducible random dynamical system. 2020. ⟨hal-03993050v2⟩
529 Consultations
259 Téléchargements

Altmetric

Partager

More