Clustering in Tractography Using Autoencoders (CINTA) - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Clustering in Tractography Using Autoencoders (CINTA)

Laurent Petit
Pierre-Marc Jodoin

Résumé

Clustering tractography streamlines is an important step to characterize the brain white matter structural connectivity. Numerous methods have been proposed to group whole-brain tractography streamlines into anatomically coherent bundles. However, the time complexity, or the initial streamline sorting in conventional methods, or still, using supervised deep learning models, may limit the results and/or restrict the versatility of the methods. In this work, we propose an autoencoder-based method for clustering tractography streamlines. CINTA, Clustering in Tractography using Autoencoders, is trained on unlabelled data, uses a single autoencoder model, and does not require any distance thresholding parameter. It obtains excellent classification scores on synthetic datasets, achieving a 0.97 F1-score on the clinical-style, realistic ISMRM 2015 Tractography Challenge dataset. Similarly, CINTA obtains anatomically reliable results on in vivo human brain tractography data. CINTA offers a time-efficient bundling framework, as its running time is linear with the streamline count.
Fichier principal
Vignette du fichier
Legarreta_CINTA_MICCAI_22.pdf (8.64 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Domaine public

Dates et versions

hal-03989010 , version 1 (14-02-2023)

Licence

Domaine public

Identifiants

Citer

Jon Haitz Legarreta, Laurent Petit, Pierre-Marc Jodoin, Maxime Descoteaux. Clustering in Tractography Using Autoencoders (CINTA). 13th International Workshop on Computational Diffusion MRI, Sep 2022, Singapour, Singapore. pp.125-136, ⟨10.1007/978-3-031-21206-2_11⟩. ⟨hal-03989010⟩
34 Consultations
61 Téléchargements

Altmetric

Partager

More