Concentration results for approximate Bayesian computation without identifiability - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Concentration results for approximate Bayesian computation without identifiability

Résumé

We study the large sample behaviors of approximate Bayesian computation (ABC) posterior measures in situations when the data generating process is dependent on non-identifiable parameters. In particular, we establish the concentration of posterior measures on sets of arbitrarily measure that contain the equivalence set of the data generative parameter, when the sample size tends to infinity. Our theory also makes weak assumptions regarding the measurement of discrepancy between the data set and simulations, and in particular, does not require the use of summary statistics and is applicable to a broad class of kernelized ABC algorithms. We provide useful illustrations and demonstrations of our theory in practice, and offer a comprehensive assessment of the nature in which our findings complement other results in the literature.
Fichier principal
Vignette du fichier
Concentration results for approximate Bayesian computation without identifiability.pdf (12.46 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03987197 , version 1 (14-02-2023)

Licence

Identifiants

  • HAL Id : hal-03987197 , version 1

Citer

Hien Nguyen, Trungtin Nguyen, Julyan Arbel, Florence Forbes. Concentration results for approximate Bayesian computation without identifiability. 2023. ⟨hal-03987197⟩
155 Consultations
63 Téléchargements

Partager

More