
HAL Id: hal-03987197
https://hal.science/hal-03987197

Preprint submitted on 14 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Concentration results for approximate Bayesian
computation without identifiability

Hien Nguyen, Trungtin Nguyen, Julyan Arbel, Florence Forbes

To cite this version:
Hien Nguyen, Trungtin Nguyen, Julyan Arbel, Florence Forbes. Concentration results for approximate
Bayesian computation without identifiability. 2023. �hal-03987197�

https://hal.science/hal-03987197
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Concentration results for approximate Bayesian computation
without identifiability

BY H. D. NGUYEN
School of Mathematics and Physics, Univ. of Queensland

St. Lucia 4067, Queensland, Australia.
h.nguyen7@uq.edu.au

T. T. NGUYEN, J. ARBEL, AND F. FORBES
Univ. Grenoble Alpes, Inria, CNRS

Grenoble INP, LJK 38000 Grenoble, France.
trung-tin.nguyen@inria.fr julyan.arbel@inria.fr florence.forbes@inria.fr

SUMMARY

We study the large sample behaviors of approximate Bayesian computation (ABC) posterior
measures in situations when the data generating process is dependent on non-identifiable param-
eters. In particular, we establish the concentration of posterior measures on sets of arbitrarily
measure that contain the equivalence set of the data generative parameter, when the sample size
tends to infinity. Our theory also makes weak assumptions regarding the measurement of discrep-
ancy between the data set and simulations, and in particular, does not require the use of summary
statistics and is applicable to a broad class of kernelized ABC algorithms. We provide useful
illustrations and demonstrations of our theory in practice, and offer a comprehensive assessment
of the nature in which our findings complement other results in the literature.

Some key words: Approximate Bayesian computation; Posterior consistency; Pseudo-posterior measure; Non-
identifiable; Concentration of mass; Large sample theory

1. INTRODUCTION

Approximate Bayesian computation (ABC) has become a leading paradigm for drawing in-
ference when data generating processes do not possess known or tractable likelihood functions.
Recent expositions regarding the history, varieties, and example applications of ABC can be
found in the comprehensive volume of Sisson et al. (2018). Other reviews of the ABC literature
can be found in Marin et al. (2012) and Beaumont (2019).

We shall place our investigation within the following general setting. Let (Ω,F ,P) be a prob-
ability space with element ω and expectation operator E. We let X∞ = (Xi)i∈N be a sequence
of random variables, where Xi : Ω→ X ⊂ Rd and Xn is a tuple containing the first n elements
of X∞ and has probability measure on the space (Xn,B (Xn)) which is absolutely continuous
with respect to m (typically the counting or Lebesgue measure), defined by density p (xn|θ0),
for some θ0 ∈ T ⊂ Rq (i, d, n, q ∈ N), which we shall call the generative parameter. We fur-
ther let Y∞ = (Yi)i∈N be another sequence of random variables Yi : Ω→ X, where the partial
sequence Yn also has a probability measure on (Xn,B (Xn)) with density p (yn|θ) and θ ∈ T.
Throughout, X∞ and Y∞ are taken to be independent.
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Let w (·, ·) : R≥0 × R>0 → R≥0, (δ, ε) 7→ w (δ, ε) be a weighting or kernel function, where
we typically think of ε as a threshold parameter. For xn,yn ∈ Xn, we then let (xn,yn) 7→
D (xn,yn) ∈ R≥0 denote some notion of a distance or a discrepancy between xn and yn and
further let θ be a random element on the probability space (T,B (T) ,Π), where Π is absolutely
continuous with respect to measure n, with density π (θ). We concern ourselves with studying
the behavior of the pseudo-posterior density:

πε (θ|Xn) =
π (θ)Lε (Xn|θ)
Cε (Xn)

, ε ∈ R>0, (1)

where

Lε (Xn|θ) =

∫
Xn
w (D (Xn,yn) , ε) p (yn|θ) dm (yn)

and

Cε (Xn) =

∫
T
π (θ)Lε (Xn|θ) dn (θ) .

We shall also consider the coarsened-posterior density:

π̄ε,n (θ) =
π (θ) E {Lε (Xn|θ)}

C̄ε,n
, ε ∈ R>0, (2)

where

C̄ε,n =

∫
T
π (θ) E {Lε (Xn|θ)} dn (θ) .

We note that the pseudo-posterior density of form (1) is often studied in the context of im-
portance sampling ABC (Karabatsos & Leisen, 2018; Nguyen et al., 2020) or kernel ABC (Park
et al., 2016; Li & Fearnhead, 2018b,a) algorithms. Our study of the coarsened-posterior density
(2) can be viewed as a homage to and generalization of results from Miller & Dunson (2019),
who consider the case where X∞ = x∞, with probability 1, for some fixed sequence x∞ (cf.
Miller & Dunson, 2019, Eqn. 2.1). Of course, the usual accept/reject ABC algorithms (e.g. Marin
et al. 2012, Algorithm 2) can be studied in this setting by taking w (δ, ε) = Jδ < εK, where we
use the Iverson bracket notation: JAK = 1 if statement A is true, and JAK = 0 otherwise. We shall
refer to both (1) and (2) as ABC posterior densities, when it is immaterial to distinguish between
them.

In recent works the asymptotic behaviors of (1) has been investigated by Bernton et al. (2019),
Nguyen et al. (2020), and Legramanti et al. (2022), when ε→ 0, for fixed n; Jiang (2018),
and Nguyen et al. (2020), when ε > 0 is fixed and n→∞; and Frazier et al. (2018), Li &
Fearnhead (2018b), Li & Fearnhead (2018a), Bernton et al. (2019), Frazier et al. (2020), and
Legramanti et al. (2022), when ε→ 0 and n→∞. Miller & Dunson (2019) provide analysis
for the behavior of (2) when ε > 0 is fixed and n→∞, in the special case when X∞ = x∞.
Our current work extends upon the best known results when ε > 0 and n→∞. Namely, we
prove broadly applicable results regarding the concentration of mass of the pseudo-posterior and
coarsened-posterior measures Πε,n and Π̄ε,n (collectively, ABC posterior measures) as n→∞,
in practical cases when the densities p (xn|θ) are not identifiable with respect to θ ∈ T. We shall
elaborate in the sequel.
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2. WEAK CONVERGENCE OF ABC POSTERIOR MEASURES

Since we are operating on both the measure spaces (Ω,F ,P) and (T,B (T) ,Π), we shall use
the convention of saying that events in the prior space are almost surely true (a.s.; with respect
to ω), and that events in the latter space occur almost everywhere (a.e.; with respect to θ), when
the events occur with probability 1 in the respective spaces.

Let D∞ (·, ·) : T× T→ R≥0 and make the following assumptions:

A1 For each θ ∈ T, D (Xn,Yn)
a.s.−→

n→∞
D∞ (θ0, θ).

A2 For each ε > 0, supδ∈R≥0
w (δ, ε) <∞.

A3 For each ε > 0, w (D∞ (θ0, ·) , ε) : T→ R≥0 is continuous on a set T̃ ⊂ T, such that

Π
(
T̃
)

= 1.

THEOREM 1. Under A1–A3, if∫
T
π (θ)w (D∞ (θ0, θ) , ε) dn (θ) > 0,

then (i) for almost every θ ∈ T:

π̄ε,n (θ) −→
n→∞

πε (θ) =
π (θ)w (D∞ (θ0, θ) , ε)∫

T π (τ)w (D∞ (θ0, τ) , ε) dn (τ)
,

and (ii) for almost every θ ∈ T:

πε (θ|Xn)
a.s.−→
n→∞

πε (θ) .

Let us first discuss the assumptions. A1 holds in a variety of settings, and is generally obtained
by combining a strong law of large numbers and continuous mapping theorem. Notice that no
assumption is made regarding the independence between elements of the sequences X∞ and
Y∞. Further, no direct conditions are imposed on the limiting function D∞, as it always appears
composed with the weight function w, as in A3. The latter assumption requires continuity on a
set of probability one with respect to the prior distribution, which is verified for the accept/reject
kernel, for instance. Lastly, A2 is a simple requirement that the weight function w is bounded.

Remark 1. Theorem 1(i) can be viewed as a generalization of the large-sample results re-
garding the coarsened-posterior, proved in Miller & Dunson (2019, Sec. S3.1), extended to cases
where X∞ is a stochastic sequence with non-degenerate measure. Theorem 1(ii) makes the same
conclusion as Jiang (2018, Thm. 1) and Nguyen et al. (2020, Thm. 2), although the proofs in the
aforementioned works require some clarification, which we take the opportunity to make. All
proofs of main results can be found in the Appendix of this text, in the Supplementary Materials.

To proceed, we require the notion of almost sure weak convergence, which is defined in Berti
et al. (2006) and Grübel & Kabluchko (2016). Let P (T) be the space of probability measures
on T, and let (Πω,n)n∈N be a sequence measures in P (T), indexed by ω ∈ Ω. We say that Πω,n

almost surely weakly converges to Π ∈P (T), if there exists a set Ω̃ ∈ F such that P
(

Ω̃
)

= 1

and for every ω ∈ Ω̃, Πω,n converges weakly to Π , as n→∞. By the usual definition of weak
convergence, this is equivalent to the condition that∫

T
f (θ) dΠω,n (θ) −→

n→∞

∫
T
f (θ) dΠ (θ) ,

for every bounded and continuous function f : T→ R, for each ω ∈ Ω̃.
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COROLLARY 1. Let the measures Πε,n and Π̄ε,n be defined by

Πε,n (A) =

∫
A
πε (θ|Xn) dn (θ) , and Π̄ε,n (A) =

∫
A
π̄ε,n (θ) dn (θ) ,

for A ∈ B (T), respectively, for each n ∈ N. Then, under A1–A3, (i) Π̄ε,n converges weakly to
Πε, and under A1–A3, (ii) Πε,n converges almost surely weakly to Πε, where Πε is defined by

Πε (A) =

∫
A
πε (θ) dn (θ) .

3. CONCENTRATION OF MASS

We let Bθ = {τ ∈ Rq : ‖θ − τ‖2 < 1} be the (open) unit ball in Rq with respect to the Eu-
clidean norm ‖·‖2, centered at θ ∈ Rq, and we note that we can scale B0 by a factor λ > 0
to obtain balls λB0 = {λb : b ∈ B0} with any radius λ. Let T0 ⊂ T be some set of interest.
We say that Θλ ⊂ T is the set of the λ-covering centres for T0 if T0 ⊂ Θλ ⊕ λB0, where
A⊕ B = {a+ b : a ∈ A, b ∈ B} is the Minkowski sum. If Θλ is a finite set, then we will de-
note its cardinality by |Θλ|. We shall denote the Lebesgue measure on Rq by Leb.

Let θ0 ∈ T and make the following assumptions:

B1 Let D∞ (θ0, ·) : T→ R≥0 and assume that the set of its zeroes Θ0 =
{θ ∈ T : D∞ (θ0, θ) = 0} is non-empty.

B2 For each λ > 0, there exists an ε > 0, such that if D∞ (θ0, θ) < ε, then infτ∈Θ0 ‖θ − τ‖2 <
λ.

B3 For each λ > 0, there exists a covering of Θ0 with λ-covering centres Θλ ⊂ T, such that
λq |Θλ| −→

λ→0
0.

B4 The weight function w(·, ·) can be decomposed as

w (δ, ε) = W (δ, ε) Jϕ (δ) < εK ,

where W : R≥0 × R≥0 → R≥0 and ϕ : R≥0 → R≥0 is strictly increasing and bijective,
with ϕ (0) = 0.

THEOREM 2. Assume B1–B3. Then, (i) as λ→ 0,

Leb (Θ0 ⊕ λB0)→ 0.

Let
∫
T π (θ)w (D∞ (θ0, θ) , ε) dn (θ) > 0, for each ε > 0. If we further assume A1–A3 and B4,

then (ii) for every λ > 0, there exists an ε > 0, such that

Π̄ε,n (Θ0 ⊕ λB0) −→
n→∞

1,

and (iii) for every λ > 0, there exists an ε > 0, such that

Πε,n (Θ0 ⊕ λB0)
a.s.−→
n→∞

1.

Let us now unpack the assumptions and conclusions of Theorem 2. Firstly, B1 simply assumes
that the zeroes of D∞ (θ0, θ) = 0 exists. If D∞ : T× T→ R≥0 is a pseudometric on T (as per
Richmond 2020, Sec. 11.1), then we may consider Θ0 to be the equivalent class defined by the
generative parameter: Θ0 = [θ0], corresponding to the equivalence relationship: D∞ (θ0, θ) =
0. B2 is a primitive boundedness and an identification assumption. Here, if we again consider
D∞ to be a pseudometric, then we may consider the definition of a new metric over equivalent
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classes T∼ = {[θ] : θ ∈ T} denoted by D∼ : T∼ × T∼ → R≥0. Then B2 is satisfied by taking
D∼ to be Hölder continous with respect to the Euclidean Hausdorff distance on sets ‖· − ·‖∼ :
T∼ × T∼ → R≥0 defined by

‖[θ]− [τ ]‖∼ = max

{
sup
t1∈[θ]

inf
t2∈[τ ]

‖t1 − t2‖2 , sup
t1∈[τ ]

inf
t2∈[θ]

‖t1 − t2‖2

}
,

in the sense that there exists an L,K > 0 such that ‖[θ]− [τ ]‖∼ ≤ LD∼ ([θ] , [τ ])K , for every
θ, τ ∈ T.

Another simplification of B2 can be obtained by taking Θ0 = {θ0} to be a singleton. Then,
B2 is implied by the condition that D∞ is a metric and the identity function θ 7→ θ continuously
maps the metric spaces (T, D∞) and (T, ‖· − ·‖2), uniformly. This again is implied by the Lip-
schitz/Hölder condition that there exists an L,K > 0 such that ‖θ − τ‖2 ≤ LD∞ (θ, τ)K , for
every θ, τ ∈ T.

Next, B3 states that there exists a set of covering centres Θλ of Θ0 that does not grow too
quickly, since we need the Lebesgue measure of the Euclidean balls covering Θ0 to be small
when λ is small, in order to establish Part (i) of the theorem. Here, the assumption is automati-
cally fulfilled when Θ0 is a finite set, which particularly holds true when Θ0 is a singleton. Note,
however that countability of Θ0 is not a sufficient condition for B3.

Lastly, B4 implies that w (D∞ (θ0, ·) , ε) and its support are bounded, when taken together
with A2. This holds for the classical accept/reject kernel w (δ, ε) = Jδ < εK, but not for kernels
with unbounded support, such as the Gaussian kernel w (δ, ε) = exp

(
−δ2/ε

)
, that is considered

in Park et al. (2016) and Nguyen et al. (2020).
We can interpret Theorem 2 as follows. Part (i) states that under B1–B3, we can always cover

the zero set Θ0, of elements of T that are indistinguishable from θ0, usingD∞, by Euclidean balls
with radius λ, such that the total volume of the covering vanishes with respect to the Lebesgue
measure, as λ→ 0. Then, Part (ii) states that if we further assume A1–A3 and B4, we have the
fact that given any choice of λ > 0, we can pick an ε > 0 such that the ABC posterior measure,
Π̄ε,n or Πε,n, of the covering of Θ0 converges to full mass as n→∞. That is, regardless of how
small the Lebesgue measure of our covering of Θ0 is, we can always choose an ε > 0 such that
the ABC posterior always eventually concentrates its mass entirely within the covering. Part (iii)
then makes the equivalent conclusion regarding the pseudo-posterior Πε,n, in the almost sure
sense.

The conclusions can be viewed as a kind of posterior consistency, as defined in Ghosal &
Van der Vaart (2017, Ch. 6), where posterior consistency requires that the posterior measure
concentrates on a point mass (with zero Lebesgue measure, in the continuous case), as n→∞,
in some sense, in the case where Θ0 is a singleton. Here, we can call our conclusion a nearly
posterior consistency result, since we obtain the fact that the ABC posterior measures concentrate
on a sets of negligible mass, instead, for any size of negligibility, and for potentially uncountable
Θ0.

Remark 2. Like Bernton et al. (2019), Frazier et al. (2020), and Legramanti et al. (2022), we
can also permit misspecification between the density of the data generating process p (xn|θ0)
and that of the simulated data p (yn|θ), by allowing for the possibility that D∞ (θ0, θ) > 0, for
all θ ∈ T. This can be achieved by replacing Θ0 in B1 by Θ∗ = {θ ∈ T : D∞ (θ0, θ) = ε∗},
where ε∗ = minθ∈TD∞ (θ0, θ) (assuming that ε∗ exists), and replacing B2 by the condition: for
each λ > 0, there exists an ε > 0, such that if D∞ (θ0, θ) < ε+ ε∗, then infτ∈Θ∗ ‖θ − τ‖2 < λ.
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This then provides a result in situations when the underlying data generating process is both
unidentifiable and misspecified.

4. ILLUSTRATIVE EXAMPLES OF POSTERIOR CONCENTRATION

4.1. Identifiable normal model
Let us suppose that X∞ is an independent and identically distributed (IID) sequence defined

by Xi ∼ N (θ0, 1) for each i ∈ N, and that Y∞ is independent of X∞, with elements Yi ∼
N (θ, 1), where θ0, θ ∈ T = R. We will take π (θ) = φ (θ; 0, 1), where φ

(
·;µ, σ2

)
is the normal

density function with mean µ ∈ R and variance σ2 > 0. We shall use the distance

D (Xn,Yn) =

∣∣∣∣∣n−1
n∑
i=1

Xi − n−1
n∑
i=1

Yi

∣∣∣∣∣ . (3)

The law of large numbers and continuous mapping implies that D (Xn,Yn)
a.s.−→

n→∞
D∞ (θ0, θ) = |θ0 − θ|. Provided that w satisfies A2 and A3, then Theorem 1 implies that the
coarsened-posterior and pseudo-posterior densities

π̄ε,n (θ) =
φ (θ; 0, 1) E

{∫
Rn w (D (Xn,yn) , ε)

∏n
i=1 φ (yi; θ, 1) dyn

}∫
R φ (τ ; 0, 1) E

{∫
Rn w (D (Xn,yn) , ε)

∏n
i=1 φ (yi; τ, 1) dyn

}
dτ

(4)

and

πε,n (θ) =
φ (θ; 0, 1)

∫
Rn w (D (Xn,yn) , ε)

∏n
i=1 φ (yi; θ, 1) dyn∫

R φ (τ ; 0, 1)
∫
Rn w (D (Xn,yn) , ε)

∏n
i=1 φ (yi; τ, 1) dyndτ

(5)

converge to

πε (θ) =
φ (θ; 0, 1)w (|θ0 − θ| , ε)∫

R φ (τ ; 0, 1)w (|θ0 − τ | , ε) dτ
, (6)

where we write from now on dm and dn as d for the Lebesgue measure. To make the conclusions
of Theorem 2, we require a choice of w that satisfies B4. Two possibilities are the venerable
accept/reject kernel and the triweight kernel:

w (δ, ε) =
{

1− (δ/ε)2
}3

Jδ < εK ,

which corresponds to a choice of W (δ, ε) =
{

1− (δ/ε)2
}3

and ϕ (δ) = δ. In either case, since
Θ0 is equal to the singleton {θ0}, it is then procedural to verify the remaining assumptions
B1–B3 of Theorem 2, which then implies that the ABC posteriors can be made to concentrate
on sets of arbitrarily small Lebesgue measure by making ε sufficiently small. We visualize the
concentration of the limiting measure Πε in Figure 1, for both the cases of the accept/reject and
triweight kernels.

4.2. Finitely unidentifiable normal model
We now instead suppose that X∞ is an IID sequence defined by Xi ∼ N

(
θ2

0, 1
)

for each
i ∈ N, and that Y∞ is independent of X∞, with elements Yi ∼ N

(
θ2, 1

)
, where θ0, θ ∈ T = R.

We again use the distance (3), which almost surely converges to D∞ (θ0, θ) =
∣∣θ2

0 − θ2
∣∣.

For non-zero generative parameter θ0, B1 holds with Θ0 = {−θ0, θ0}. B2 holds since∣∣θ2
0 − θ2

∣∣ < ε implies that minτ∈{−θ0,θ0} {|τ − θ|} <
√
ε = λ. The verification of the remaining
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Fig. 1. Limiting posterior densities of form (6) using the
accept/reject kernel (left) and triweight kernel (right), with
θ0 = 1, are graphed for a range of values of 11 threshold
values ε, between 0.1 and 1. The prior densities are drawn

with dotted lines.

assumptions A1–A3 and B3–B4 for the case of w set to the accept/reject and triweight kernels
follows from analogous arguments to those made in Section 4.1. As such, we have the fact that
the ABC posterior measures concentrate mass on sets with arbitrarily small Lebesgue measure,
for sufficiently small ε > 0, and have respective limiting densities:

πε (θ) =
φ (θ; 0, 1)

q∣∣θ2
0 − θ2

∣∣ < ε
y∫

R φ (τ ; 0, 1)
q∣∣θ2

0 − τ2
∣∣ < ε

y
dτ

, (7)

and

πε (θ) =

φ (θ; 0, 1)

{
1−

(
|θ20−θ2|

ε

)2
}3

q∣∣θ2
0 − θ2

∣∣ < ε
y

∫
R φ (τ ; 0, 1)

{
1−

(
|θ20−τ2|

ε

)2
}3

q∣∣θ2
0 − τ2

∣∣ < ε
y

dτ

, (8)

when w is taken to be either the accept/reject or triweight kernels. We plot the concentration of
mass of the corresponding measures for various values of ε > 0 in Figure 2.

4.3. Infinitely unidentifiable normal model
We further complicate the situation by supposing that X∞ is an IID sequence defined by

Xi ∼ N (||θ0||1, 1) for each i ∈ N, and that Y∞ is independent of X∞, with IID elements
Yi ∼ N (||θ||1, 1). In this example, θ0 = (θ01, θ02) and θ = (θ1, θ2) are elements in T = R2

with ||θ0||1 = |θ01|+ |θ02| and ||θ||1 = |θ1|+ |θ2| denoting their L1-norms. We naturally use
the prior π (θ) = φ (θ1; 0, 1)φ (θ2; 0, 1) and consider the distance (3), which almost surely con-
verges to D∞ (θ0, θ) = |||θ0||1 − ||θ||1|. B1 holds with

Θ0 = {τ = (τ1, τ2) : ||τ ||1 = ||θ0||1}
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Fig. 2. Limiting posterior densities (7) with accept/reject
kernel (left) and (8) with triweight kernel (right), with θ0 =
2, are graphed for a range of 11 threshold values ε, between
0.2 and 3. The prior densities are drawn with dotted lines.

and B2 holds with ε = λ since |||θ0||1 − ||θ||1| < ε implies that infτ∈Θ0 {||τ − θ||1} < ε = λ
and ‖τ − θ‖2 ≤ ‖τ − θ‖1 for each τ ∈ Θ0. We also have to verify B3, which can be achieved
by noting that Θ0 is the contour of the L1-ball of radius ||θ0||1 and thus consists of four line seg-
ments, each of length a

√
2, where a = ||θ0||1. We can cover each of line segments with Euclidean

balls of radius λ > 0 by placing a ball on each of the a
√

2/(2λ) equidistant points along the line,
of distance 2λ apart. Then, we can check B3 by evaluating λq |Θλ| = 4× λ2

(
a
√

2/(2λ)
)

=

2aλ
√

2, which approaches zero as λ→ 0, as required. The verification of A1–A3 and B4 for con-
cluding Theorem 1 Part (i) and Theorem 2 Part (ii) using w set to the accept/reject and triweight
kernels is then procedural. We demonstrate concentration of mass by plotting the support of the
limits of both of the ABC posterior measures, defined by (4) and (5), in Figure 3. For both ker-
nels, the support satisfies |||θ||1 − ||θ0||1| ≤ ε or equivalently ||θ0||1 − ε ≤ ||θ||1 ≤ ||θ0||1 + ε,
which corresponds to the region between the L1-balls of radii ||θ0||1 + ε and ||θ0||1 − ε.

Remark 3. Besides our choices for w, one can make use of any number of common kernels
with compact supports from the theory of density estimation, such as the triangular or Epanech-
nikov kernels (cf. Scott 2015, Ch. 6).

Remark 4. We have used the example of normal distributions for the measures of Xi, Yi (i ∈
N), and θ, in all of the examples above out of convenience. Of course, the same illustrations
can be made if we replace all uses of the normal law N(µ, σ2), with density φ

(
·;µ, σ2

)
, by

any generic location-scale law defined by density ψ (·;µ, σ) with location and scale parameters
µ ∈ R and σ > 0, provided that the necessary integrals with respect to ψ exist.

5. NUMERICAL ESTIMATION OF POSTERIOR MEASURES

We have opted for examples with summary-based discrepancy functions D and for IID se-
quences X∞ and Y∞, for ease of understanding and simplicity of exposition. However, the
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Fig. 3. Supports of limiting posterior measures from Sec-
tion 4.3 for various threshold values ε, when θ0 = (1, 1)

and ||θ0||1 = 2.

main conclusions of Theorems 1 and 2 apply in much broader settings, as we will demonstrate
below.

5.1. Non-IID sequences from a first-order autoregressive model
In this example, we consider X∞ = (Xi)i∈N, where Xi can be characterized as

Xi = |θ0|Xi−1 + Ei,

where θ0 ∈ (−1, 1) = T, X0 ∼ N
(

0, 1/
{

1− |θ0|2
})

, and (Ei)i∈N is IID with Ei ∼ N (0, 1).
Similarly, we write Y∞ = (Yi)i∈N, characterized by

Yi = |θ|Yi−1 + E′i,

with θ ∈ T, where Y0 ∼ N
(

0, 1/
{

1− |θ|2
})

and (E′i)i∈N is IID with E′i ∼ N (0, 1). We shall
use a uniform prior density π (θ) = J|θ| < 1K /2. Via Hall & Heyde (1980, Thm. 6.6), we
have the following strongly consistent estimators of |θ0| and |θ| from Xn and Yn: r0,n =∑n

i=2XiXi−1/
∑n

i=2X
2
i and rn =

∑n
i=2 YiYi−1/

∑n
i=2 Y

2
i , respectively. Thus, the distance

D (Xn,Yn) = |r0,n − rn| converges almost surely to D∞ (θ0, θ) = ||θ0| − |θ||.
To estimate the ABC posterior measures, we sample (θk)k∈[m] and compute (Dk)k∈[m] as

described in Algorithm 1. For any given ε > 0, we can then characterize the ABC posterior
measures via their distributions functions, estimated by their respective empirical distribution
functions. The larger the value of m, the more accurate the empirical distribution is to its target.
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When we take w to be the accept/reject kernel, the empirical distribution function is given by:

FAR
m,ε (θ) =

{
m∑
k=1

JDk < εK

}−1 m∑
k=1

JDk < ε, θk < θK . (9)

Similarly, when taking w to be the triweight kernel, we can estimate distribution functions that
characterize the ABC posterior measures, for any given ε, via the empirical weighted distribution
function:

F tri
m,ε (θ) =


m∑
k=1

{
1−

(
Dk

ε

)2
}3

JDk < εK


−1

m∑
k=1

{
1−

(
Dk

ε

)2
}3

JDk < ε, θk < θK .

(10)
Figure 4 displays sample functions (9) and (10) from an experiment with θ0 = 1/2, n ∈
{100, 1000}, and m = 10000. We observe that the empirical distribution functions both con-
centrate around the estimates {−r0,n, r0,n}, which converge towards the zeroes of D∞ (θ0, θ):
Θ0 = {−θ0, θ0} = {−1/2, 1/2}. The support of the sample measures are supersets of the esti-
mates {−r0,n, r0,n} that decrease in size as ε decreases towards zero, as expected. We also ob-
serve that, for fixed ε the empirical distribution functions both converge to their limiting forms,
as n increases, as predicted by Corollary 1.

Algorithm 1 Monte Carlo sampling for estimation of the pseudo-/coarsened-posterior measures.
Input: Data Xn, discrepancy function D, number of Monte Carlo replications m ≥ 1.
For k ∈ [m]:

Sample θk from a measure with density π (θ);
Generate Yn,k from a measure with density f (yn|θk);
Compute discrepancy Dk = D (Xn,Yn,k).

Output: Discrepancies Dm = (Dk)k∈[m]; Parameters Θm = (θk)k∈[m].

5.2. Wasserstein distance
For this example, we take X∞ to be an IID sequence of random variables, where Xi ∼

N
(
||θ0||22, 1

)
, for each i ∈ N. We let θ0 = (θ01, θ02) ∈ T = [−2, 2]2 and endow T with the prior

measure defined by the uniform density π (θ) =
r

(θ1, θ2) ∈ [−2, 2]2
z
/16. We then take Y∞ to

be an IID sequence, independent of X∞, such that Yi ∼ N
(
||θ||22, 1

)
, for each i ∈ N.

To measure the distance between partial sequences Xn and Yn, we use the sample 1-
Wasserstein distance

D (Xn,Yn) = n−1
n∑
i=1

∣∣X(i) − Y(i)

∣∣ ,
where X(1) ≤ X(2) ≤ · · · ≤ X(n) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) are the order statistics of Xn

and Yn, respectively (cf. Peyré & Cuturi 2019, Rem. 2.28). In this case, the 1-Wasserstein dis-
tance between measures on R is just the L1 distance between the distribution functions ofX1 and
Y1, Fθ0 and Fθ (say) (Peyré & Cuturi, 2019, Rem. 2.30). The Glivenko–Cantelli theorem implies
that D (Xn,Yn) converges almost surely to D∞ (θ0, θ) =

∫∞
−∞ |Fθ0 (x)− Fθ (x)| dx. To verify

B2, we use the fact that the 1-Wasserstein distance between normal distributions N(µ1, σ
2) and

N(µ2, σ
2) is |µ1 − µ2|, for µ1, µ2 ∈ R (cf. Chafai & Malrieu, 2010, Example. 2.5).
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Fig. 4. Empirical distribution function FAR
m,ε (9) (left) and

weighted empirical distribution function F tri
m,ε (10) (right)

for the experiment described in Section 5.1, with θ0 =
1/2, m = 10000, and sample sizes equal to n = 100 (top
row), n = 1000 (middle row), and n = ∞ (bottom row;
limiting measures). Dotted diagonal lines represent the dis-

tribution function of the prior measure.
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We again use Algorithm 1 to obtain estimates of the ABC posteriors using the accept/reject
kernel and the triweight kernel in place of w. Simulations are carried out with θ01 = θ02 =
1/
√

2, n ∈ {100, 1000}, and m = 10000. Interpreting the expression θk < θ as meaning θk1 <
θ1 and θk2 < θ2 (for θk, θ ∈ R2), we provide representations of the obtained estimated empirical
distribution functions of form (9) and (10) via their weighted point masses in Figure 5, along with
an illustration of the supports of the limiting ABC posterior measures for various values of ε. We
observe, as predicted, that the estimated ABC posterior measures concentrate on supersets of the
zeroes of D∞, which can be characterized by the contour of the L2-ball of radius ‖θ0‖2 = 1:
Θ0 =

{
θ = (θ1, θ2) ∈ R2 : ‖θ‖2 = ‖θ0‖2

}
, where the sets get smaller in volume as ε decreases,

and where smaller weights w (Dk, ε) are assigned for larger deviations from Θ0. As expected
from Corollary 1, we observe that the supports of the empirical representations converge to those
of the limiting measures, as n increases, for fixed values of ε.

To complement these numerical results, we provide an additional example in the Appendix,
motivated by a sound source localization application from Forbes et al. (2022). Further, we note
that when X∞ and Y∞ arise from general location-scale distributions instead of normal distri-
butions, we can use the formula of Gelbrich (1990, Cor. 2.4), together with the Wasserstein norm
equivalence result of Garling (2018, Cor. 21.2.4), in order to verify B2.

6. DISCUSSION

Investigations regarding the asymptotics of ABC algorithms have seen ongoing progress and
our work is only one piece of a larger tapestry of findings that provide theoretical results and
guarantees for such techniques. As such, we find that a discussion of the placement of our work
in proximity to other treatments is useful and imperative. Firstly, we note that our work follows
the progress of Jiang (2018), Miller & Dunson (2019), and Nguyen et al. (2020), who focus on
the use of limit theorems to derive asymptotics regarding the ABC posteriors Π̄n,ε and Πn,ε. This
differs from the approaches of Frazier et al. (2018), Bernton et al. (2019), Frazier et al. (2020),
and Legramanti et al. (2022), who rely on concentration of probability inequalities in order to
provide rates at which the posterior measure converges in probability. However, although we do
not provide in-probability rates, our results establish the stronger modes of L1 and almost sure
convergence of posterior objects instead.

It is also notable that Theorem 2 only provides nearly posterior consistency results, rather than
true posterior consistency, as discussed in Section 3, which would require a result that guarantees
that Π̄n,ε or Πn,ε converges to a point mass, in some mode of convergence, when ε is taken to be
a decreasing function of n, as n→∞. Such a result is in fact guaranteed by Frazier et al. (2018,
Thm. 1), Bernton et al. (2019, Cor. 1), and Legramanti et al. (2022, Cor. 1), in probability. We
note that both Frazier et al. (2018, Thm. 1), Bernton et al. (2019, Cor. 1), and Legramanti et al.
(2022, Cor. 1) make Hölder continuity assumptions that are stronger than our uniform continuity
assumption when interpreting B2 in the identifiable case, and obviously much stronger than our
assumptions in non-identifiable cases. In particular, in comparison to Frazier et al. (2018, Thm.
1), we do not require that D be a distance between summary statistics. This is also true when
comparing with the results of Li & Fearnhead (2018b,a).

Next, unlike Frazier et al. (2018), Bernton et al. (2019), Frazier et al. (2020), and Legramanti
et al. (2022), we provide asymptotic results for weightsw other than the accept/reject kernel. This
is a feature that is shared with Li & Fearnhead (2018b,a). However, our structural assumptions A3
and B4 are fairly mild in comparison to the location-scale form requirements and the existence of
higher order moments of Li & Fearnhead (2018b,a). However, the additional restrictions together
with stronger assumptions regarding the concentration of measure and weak convergence of
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tion function FAR
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tribution function F tri
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summaries of Xn and Yn, and concentration of the prior measure Π permits Frazier et al. (2018);
Li & Fearnhead (2018b,a), and Frazier et al. (2020) to establish weak and strong convergence of
Πn,ε to measures with explicit forms.

In summary, we have provided a set of results that permit the establishment of nearly poste-
rior consistency of ABC posterior measures in the L1 and almost sure sense, in scenarios that
lack identifiability and when discrepancies are possibly not Hölder continuous, and when the
sequences X∞ and Y∞ are non-IID. Our results provide valuable complements to the existing
literature that deliver theoretical guarantees to situations that are not covered by previous works.
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SUMMARY

This supplement contains an Appendix comprising proofs of the main results from the primary
document. We also include external technical results required within the proofs. An additional
numerical illustration is also reported in the final section.

APPENDIX

Technical results
LEMMA 1. Let (Fn)n∈N be a filtration of F , and let F∞ = σ

(⋃
n∈NFn

)
. Let (Un)n∈N be a

sequence of random variables, such that Un
a.s.−→
n→∞

U , where |Un| ≤ V , for each n ∈ N, such that

E(V ) <∞. Then, limn→∞ E (Un|Fn) = E (U |F∞), almost surely and in L1.

Remark 1. Lemma 1 is often called Hunt’s Lemma and can be found in Dellacherie & Meyer
(1980) and Spataru (2013, Thm. 29.32).

Proofs of main results
Proof of Theorem 1

We prove this result via Lemma 1. Start by setting

Un = w (D (Xn,Yn) , ε) ,

where both Xn and Yn are functions of ω ∈ Ω. By A2, we can set the (deterministic) constant
v = supδ w (δ, ε) <∞, so that |Un| ≤ v <∞. By A1

D (Xn,Yn)
a.s.−→

n→∞
D∞ (θ0, θ)

and w (·, ε) is almost surely continuous at D∞ (θ0, θ) by A3, so by continuous mapping:

Un → U = w (D∞ (θ0, θ) , ε) .

Now set Fn = σ (Xn), which approaches F∞ =
⋃
n∈NFn. Lemma 1 applied directly implies

that

E {w (D (Xn,Yn) , ε) |Fn} → E {w (D∞ (θ0, θ) , ε) |F∞} ,

1
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almost surely and in L1, as n→∞. Note that the left-hand side reduces to

E {w (D (Xn,Yn) , ε) |Fn} = E {w (D (Xn,Yn) , ε) |X1, . . . , Xn}

=

∫
Xn
w (D (Xn,yn) , ε) p (yn|θ) dm(yn)

= Lε (Xn|θ)

and that the right-hand side reduces to a constant, we have

Lε (Xn|θ)
a.s., L1−→
n→∞

w (D∞ (θ0, θ) , ε) . (1)

To prove (i), we note that A3 implies that (1) holds for almost every θ ∈ T. The L1 convergence
then implies that

E {Lε (Xn|θ)}
a.e.−→
n→∞

w (D∞ (θ0, θ) , ε) and π (θ) E {Lε (Xn|θ)}
a.e.−→
n→∞

π (θ)w (D∞ (θ0, θ) , ε) .

Applying the dominated convergence theorem, upon noting that E {Lε (Xn|θ)} ≤ supδ w (δ, ε)
and that π (θ) is a density function, we then obtain

C̄ε,n −→
n→∞

∫
T
π (θ)w (D∞ (θ0, θ) , ε) dn (θ) ,

which completes the proof.
To prove (ii), we again use A3 and (1) to now obtain the fact that for almost every θ ∈ T

π (θ)Lε (Xn|θ) −→
n→∞

π (θ)w (D∞ (θ0, θ) , ε) , (2)

almost surely. We now apply Lemma 1 in an alternative manner. That is, using the same filtration
(Fn)n∈N, we write the normalization term Cε (Xn) as the conditional expectation

E(ω,θ) {w (D (Xn,Yn) , ε) |Fn} =

∫
T

∫
Xn
w (D (Xn,yn) , ε) p (yn|θ)π (θ) dm (yn) dn (θ)

with respect to the product measure defined by the joint density p (yn|θ)π (θ). By the same
argument as used to obtain (1), Lemma 1 implies that

E(ω,θ) {w (D (Xn,Yn) , ε) |Fn} → E(ω,θ) {w (D (θ0, θ) , ε) |F∞}

almost surely and in L1, as n→∞. By Tonelli’s theorem and by definition of E(ω,θ), we have

E(ω,θ) {w (D (θ0, θ) , ε) |F∞} =

∫
Ω

∫
T
w (D (θ0, θ) , ε)π (θ) dn (θ) dP (ω)

=

∫
T
π (θ)w (D (θ0, θ) , ε) dn (θ)

since w (D (θ0, θ) , ε) is bounded and does not depend on ω. Thus,

Cε (Xn)
a.s.−→

n→∞

∫
T
π (θ)w (D (θ0, θ) , ε) dn (θ) . (3)

We then obtain the desired result via an application of Slutsky’s theorem for ratios.

Proof of Corollary 1
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To prove Part (i), it is sufficient to check that∫
T
f (θ)π (θ) E {Lε (Xn|θ)} dn (θ) −→

n→∞

∫
T
f (θ)π (θ)w (D∞ (θ0, θ) , ε) dn (θ) ,

for each bounded continuous function f : T→ R, which follows from the proof of Theorem 1
and an application of the dominated convergence theorem. Similarly, to prove Part (ii), it suffices
to show that∫

T
f (θ)π (θ)Lε (Xn|θ) dn (θ)

a.s.−→
n→∞

∫
T
f (θ)π (θ)w (D∞ (θ0, θ) , ε) dn (θ) ,

which follows via the same argument used to obtain (3), with the additional fact that f (θ) is
bounded and thus has finite expectation with respect to the product measure P×Π.

Proof of Theorem 2
We begin our proof of Part (i) by defining the Minkowski sum of sets A,B ⊂ T as A⊕ B =

{a+ b : a ∈ A, b ∈ B}. By B3, we have λ-covering centres Θλ ⊂ T of Θ0 (as defined by B1 and
B2). This then implies that Θ0 ⊂ Θλ ⊕ λB0. By the monotonicity of Minkoswki addition, Θ0 ⊕
λB0 ⊂ Θλ ⊕ λB0 ⊕ λB0 = Θλ ⊕ 2λB0, where we use the fact that if A is convex, then αA +
βA = (α+ β)A (cf. Schneider 2013, Ch. 3). Now, using the fact that the Lebesgue measure of
λB0 is πq/2λq/Γ (q/2 + 1) and by monotonicity, we obtain the fact that

Leb (Θλ ⊕ λB0) ≤ Leb (Θλ ⊕ 2λB0) = |Θλ|
πq/2 (2λ)q

Γ (q/2 + 1)
−→
λ→0

0,

since |Θλ|λq −→
λ→0

0.

To prove Parts (ii) and (iii), notice that for each ε > 0, w (D∞ (θ0, θ) , ε) has support on{
θ : D∞ (θ0, θ) < ϕ−1 (ε)

}
, by B4. But by B1 and B2, for each λ > 0, there exists a ε > 0,

such that if D∞ (θ0, θ) < ϕ−1 (ε), then minτ∈Θ0 ‖θ − τ‖ < λ, and thus{
θ : D∞ (θ0, θ) < ϕ−1 (ε)

}
⊂ Θ0 ⊕ λB0,

by Part (i), and∫
(Θ0⊕λB0)∩T

π (θ)w (D∞ (θ0, θ) , ε) dn (θ) ≥
∫
{ϕ(D∞(θ0,θ))<ε}∩T

π (θ)w (D∞ (θ0, θ) , ε) dn (θ)

=

∫
T
π (θ)w (D∞ (θ0, θ) , ε) dn (θ) ,

where the equality holds by the fact that w (D∞ (θ0, θ) , ε) is zero when ϕ (D∞ (θ0, θ)) ≥ ε.
Thus, ∫

(Θ0⊕λB0)∩T π (θ)w (D∞ (θ0, θ) , ε) dn (θ)∫
T π (θ)w (D∞ (θ0, θ) , ε) dn (θ)

= 1
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since (Θ0 ⊕ λB0) ∩ T ⊂ T. Next, under A1–A3 we follow the proof of Corollary 1 Part (i), and
conclude via the dominated convergence theorem that∫

(Θ0⊕λB0)∩T
π (θ) E {Lε (Xn|θ)} dn (θ) =

∫
T

Jθ ∈ Θ0 ⊕ λB0Kπ (θ) E {Lε (Xn|θ)} dn (θ)

−→
n→∞

∫
T

Jθ ∈ Θ0 ⊕ λB0Kπ (θ)w (D∞ (θ0, θ) , ε) dn (θ)

=

∫
(Θ0⊕λB0)∩T

π (θ)w (D∞ (θ0, θ) , ε) dn (θ) ,

as required to show Part (ii). Similarly, Part (iii) follows from A1–A3, via the dominated converge
theorem on an almost sure set, to obtain∫

(Θ0⊕λB0)∩T
π (θ)Lε (Xn|θ) dn (θ) =

∫
T

Jθ ∈ Θ0 ⊕ λB0Kπ (θ)Lε (Xn|θ) dn (θ)

a.s.−→
n→∞

∫
T

Jθ ∈ Θ0 ⊕ λB0Kπ (θ)w (D∞ (θ0, θ) , ε) dn (θ)

=

∫
(Θ0⊕λB0)∩T

π (θ)w (D∞ (θ0, θ) , ε) dn (θ) ,

as in Corollary 1 Part (ii).

Binaural sound source localisation
The following example is a simplified version of the synthetic sound source localization ex-

ample of Forbes et al. (2022). Here, we take X∞ to be an IID sequence of random variables,
with Xi ∼ N (ITD(θ0), 1/4), for each i ∈ N, and θ0 ∈ R2 is interpreted as the 2D position of
a sound source, assumed to be captured only through the noisy measurements of so-called in-
teraural time differences (ITDs). In a binaural setting with two microphones, the ITD is de-
fined as the difference between the time of arrival to the first and second microphone and
given by ITD(θ0) = |‖θ0 − µ1‖2 − ‖θ0 − µ2‖2| for a source in θ0 and microphones at posi-
tions µ1, µ2 ∈ R2. ITD measurements only allow to determine a pair of hyperbolas on which
the source maybe. We let θ0 = (θ01, θ02) ∈ T = [−2, 2]2 and endow T with the prior measure
defined by the uniform density π (θ) =

r
(θ1, θ2) ∈ [−2, 2]2

z
/16. We then take Y∞ to be an

IID sequence, independent of X∞, such that Yi ∼ N (ITD(θ), 1/4), for each i ∈ N.
We proceed in the same manner as in Section 5.2 of the main text. That is, to measure the

distance between partial sequences Xn and Yn, we use the sample 1-Wasserstein distance

D (Xn,Yn) = n−1
n∑
i=1

∣∣X(i) − Y(i)

∣∣ ,
where X(1) ≤ X(2) ≤ · · · ≤ X(n) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) are the order statistics of Xn

and Yn, respectively. Again, the 1-Wasserstein distance between measures on R is just the L1

distance between the distribution functions of X1 and Y1, Fθ0 and Fθ, and we have the conver-
gence of D (Xn,Yn), almost surely, to D∞ (θ0, θ) =

∫∞
−∞ |Fθ0 (x)− Fθ (x)|dx, with B2 veri-

fied again via the form of the 1-Wasserstein distance: |ITD(θ0)− ITD(θ)| (cf. Chafai & Malrieu,
2010, Example. 2.5).

We again use Algorithm 1 to obtain estimates of the ABC posteriors using the accept/reject
kernel and the triweight kernel in place of w. Simulations are carried out with θ01 = θ02 = 1,
n ∈ {100, 1000, 10000}, and m = 10000. We provide representations of the obtained estimated
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empirical distribution functions via their weighted point masses in Figure 1, along with visual
indicators of the supports of the limiting ABC posterior measures for various values of ε. We
observe, as predicted, that the estimated ABC posterior measures concentrate on supersets of
the zeroes of D∞ which consists of two hyperbolas as shown in Figure 1. We visualize the
boundaries of the support sets for different levels of ε via patterned lines on the plots. Observe
that smaller values of ε correspond to sets with elements that sit closer to the zeroes of D∞. We
also observe that smaller weights w (Dk, ε) are assigned for larger deviations from the zeroes
of D∞. Furthermore, as expected, we observe that the supports of the empirical representations
converge to those of the limiting measures, as n increases, for each fixed value of ε.
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Fig. 1. Point mass representations of empirical distribu-
tion function FAR

m,ε (9) (left) and weighted empirical dis-
tribution function F tri

m,ε (10) (right) for the experiment de-
scribed in the section labeled: Binaural sound source lo-
calisation, with θ0 = (1, 1), m = 10000, sample size val-
ues: n = 100 (top row), n = 1000 (middle row), and n =
10000 (bottom row). Black dots represent the locations of
the two microphones on the horizontal axis (µ1 and µ2),
and another dot represents the source θ0 on the thick dot-
ted hyperbola that visualizes the set Θ0. Additional pat-
terned lines indicate the boundaries of the support of the
limiting ABC posteriors for various fixed values of ε. Left:
point masses for different threshold values ε > 0 from 0.15
to 0.3. Right: point masses for ε = 0.3, with the sizes of
points indicating the weights w (Dk, ε) (as a fraction of

the maximum observed weight).
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