Adjoint-based optimization of two-dimensional Stefan problems - Archive ouverte HAL
Article Dans Une Revue Journal of Computational Physics Année : 2023

Adjoint-based optimization of two-dimensional Stefan problems

Tomas Fullana
Taraneh Sayadi

Résumé

A range of optimization cases of two-dimensional Stefan problems, solved using a tracking-type cost-functional, is presented. A level set method is used to capture the interface between the liquid and solid phases and an immersed boundary (cut cell) method coupled with an implicit time-advancement scheme is employed to solve the heat equation. A conservative implicit-explicit scheme is then used for solving the level set transport equation. The resulting numerical framework is validated with respect to existing analytical solutions of the forward Stefan problem. An adjoint-based algorithm is then employed to efficiently compute the gradient used in the optimisation algorithm (L-BFGS). The algorithm follows a continuous adjoint framework, where adjoint equations are formally derived using shape calculus and transport theorems. A wide range of control objectives are presented, and the results show that using parameterised boundary actuation leads to effective control strategies in order to suppress interfacial instabilities or to maintain a desired crystal shape.
Fichier principal
Vignette du fichier
OptimizationStefanProblem.pdf (12.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03982348 , version 1 (10-02-2023)

Licence

Domaine public

Identifiants

Citer

Tomas Fullana, Vincent Le Chenadec, Taraneh Sayadi. Adjoint-based optimization of two-dimensional Stefan problems. Journal of Computational Physics, 2023, 475, pp.111875. ⟨10.1016/j.jcp.2022.111875⟩. ⟨hal-03982348⟩
39 Consultations
18 Téléchargements

Altmetric

Partager

More