Lesion graph neural networks for 2-year progression free survival classification of Diffuse Large B-Cell Lymphoma patients - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Lesion graph neural networks for 2-year progression free survival classification of Diffuse Large B-Cell Lymphoma patients

Résumé

Survival analysis of DLBCL patients requires the interpretation of PET images characterised by multiple small lesions. Current machine-learning approaches addressing similar problems consider as input the cropped image of a single lesion or the whole volume. In this paper, we incorporate the information of all lesions by modeling their joint survival analysis with a graph learning approach. We propose a compact graph representation of the segmented lesions enriched by radiomics features and edge weights. The representation is fed to a graph attention network to predict the 2-year Progression-Free Survival of a DLBCL patient, formalised as a graph classification problem. Experimental results on a clinical prospective database with 583 patients show that our method improves over three baseline fusion approaches.
Fichier principal
Vignette du fichier
ISBI_2023_LesionGraph.pdf (594.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03975221 , version 1 (06-02-2023)

Identifiants

  • HAL Id : hal-03975221 , version 1

Citer

Aswathi Aswathi, Mira Rizkallah, Gauthier Frecon, Clément Bailly, Caroline M Bodet-Milin, et al.. Lesion graph neural networks for 2-year progression free survival classification of Diffuse Large B-Cell Lymphoma patients. International Symposium on Biomedical Imaging, Apr 2023, Cartagena de Indias, Colombia. ⟨hal-03975221⟩
109 Consultations
124 Téléchargements

Partager

More