Graph convolutional reinforcement learning for collaborative queuing agents - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Network and Service Management Année : 2022

Graph convolutional reinforcement learning for collaborative queuing agents

Résumé

This paper explores the use of multi-agent deep learning as well as learning to cooperate principles to meet strict service level agreements, in terms of throughput and end-to-end delay, for a set of classified network flows. We consider agents built on top of a weighted fair queuing algorithm that continuously set weights for three flow groups: gold, silver, and bronze. We rely on a novel graph-convolution based, multi-agent reinforcement learning approach known as DGN. As benchmarks, we propose centralized and distributed deep Q-network algorithms and evaluate their performances in different network, traffic, and routing scenarios, highlighting both the effectiveness of our proposals and the importance of agent cooperation. We show that our DGN-based approach meets stringent throughput and delay requirements across different scenarios, decreasing silver and bronze flow median waiting delays by more than 50 % and reducing the SLA violations of the latter by nearly 60 %, with respect to a classic priority queuing approach.

Dates et versions

hal-03973095 , version 1 (03-02-2023)

Identifiants

Citer

Hassan Fawaz, Julien Lesca, Pham Tran Anh Quang, Jeremie Leguay, Djamal Zeghlache, et al.. Graph convolutional reinforcement learning for collaborative queuing agents. IEEE Transactions on Network and Service Management, 2022, pp.1-9. ⟨10.1109/TNSM.2022.3226605⟩. ⟨hal-03973095⟩
33 Consultations
0 Téléchargements

Altmetric

Partager

More