Towards an efficient and interpretable Machine Learning approach for Energy Prediction in Industrial Buildings: A case study in the Steel Industry - Archive ouverte HAL
Article Dans Une Revue 2022 IEEE/ACS 19th International Conference on Computer Systems and Applications (AICCSA) Année : 2022

Towards an efficient and interpretable Machine Learning approach for Energy Prediction in Industrial Buildings: A case study in the Steel Industry

Fichier non déposé

Dates et versions

hal-03971602 , version 1 (03-02-2023)

Identifiants

Citer

Ismehene Chahbi, Nourhène Ben Rabah, Ines Ben Tekaya. Towards an efficient and interpretable Machine Learning approach for Energy Prediction in Industrial Buildings: A case study in the Steel Industry. 2022 IEEE/ACS 19th International Conference on Computer Systems and Applications (AICCSA), 2022, pp.1-8. ⟨10.1109/AICCSA56895.2022.10017816⟩. ⟨hal-03971602⟩

Collections

UNIV-PARIS1 CRI
48 Consultations
0 Téléchargements

Altmetric

Partager

More