Multimodal phenotyping of psychiatric disorders from social interaction: Protocol of a clinical multicenter prospective study
Résumé
Identifying objective and reliable markers to tailor diagnosis and treatment of psychiatric patients remains a challenge, as conditions like major depression, bipolar disorder, or schizophrenia are qualified by complex behavior observations or subjective self-reports instead of easily measurable somatic features. Recent progress in computer vision, speech processing and machine learning has enabled detailed and objective characterization of human behavior in social interactions. However, the application of these technologies to personalized psychiatry is limited due to the lack of sufficiently large corpora that combine multi-modal measurements with longitudinal assessments of patients covering more than a single disorder. To close this gap, we introduce Mephesto, a multicentre, multi-disorder longitudinal corpus creation effort designed to develop and validate novel multi-modal markers for psychiatric conditions. Mephesto will consist of multi-modal audio-, video-, and physiological recordings as well as clinical assessments of psychiatric patients covering a six-week main study period as well as several follow-up recordings spread across twelve months. We outline the rationale and study protocol and introduce four cardinal use cases that will build the foundation of a new state of the art in personalized treatment strategies for psychiatric disorders.
Fichier principal
Multimodal-phenotyping-of-psychiatric-disorders-from-so_2022_Personalized-Me.pdf (1 Mo)
Télécharger le fichier
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|