DaFNeGE: Dataset of French Newsletters with Graph Representation and Embedding - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

DaFNeGE: Dataset of French Newsletters with Graph Representation and Embedding

Résumé

Natural language resources are essential for integrating linguistic engineering components into information processing suites. However, the resources available in French are scarce and do not cover all possible tasks, especially for specific business applications. In this context, we present a dataset of French newsletters and their use to predict their impact, good or bad, on readers. We propose an original representation of newsletters in the form of graphs that take into account the layout of the newsletters. We then evaluate the interest of such a representation in predicting a newsletter’s performance in terms of open and click rates using graph convolution network models.
Fichier non déposé

Dates et versions

hal-03966533 , version 1 (31-01-2023)

Identifiants

Citer

Alexis Blandin, Farida Saïd, Jeanne Villaneau, Pierre-François Marteau. DaFNeGE: Dataset of French Newsletters with Graph Representation and Embedding. Text, Speech and Dialog (TSD) conference, Sep 2022, Brno, Czech Republic. pp.16-27, ⟨10.1007/978-3-031-16270-1_2⟩. ⟨hal-03966533⟩
34 Consultations
0 Téléchargements

Altmetric

Partager

More