A modular construction of unramified p-extensions of Q(N1/P) - Archive ouverte HAL
Article Dans Une Revue Proceedings of the American Mathematical Society, Series B Année : 2022

A modular construction of unramified p-extensions of Q(N1/P)

Résumé

We show that for primes N, p ≥ 5 with N ≡ −1 mod p, the class number of Q(N 1/p) is divisible by p. Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when N ≡ −1 mod p, there is always a cusp form of weight 2 and level Γ 0 (N 2) whose th Fourier coefficient is congruent to + 1 modulo a prime above p, for all primes. We use the Galois representation of such a cusp form to explicitly construct an unramified degree-p extension of Q (N 1/p).
Fichier principal
Vignette du fichier
S2330-1511-2022-00141-X.pdf (297.67 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03965682 , version 1 (31-01-2023)

Licence

Identifiants

Citer

Jaclyn Lang, Preston Wake. A modular construction of unramified p-extensions of Q(N1/P). Proceedings of the American Mathematical Society, Series B, 2022, 9, pp.415 - 431. ⟨10.1090/bproc/141⟩. ⟨hal-03965682⟩
11 Consultations
27 Téléchargements

Altmetric

Partager

More