New Bounds and Constructions for Neighbor-Locating Colorings of Graphs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

New Bounds and Constructions for Neighbor-Locating Colorings of Graphs

Résumé

A proper k-vertex-coloring of a graph G is a neighbor-locating k-coloring if for each pair of vertices in the same color class, the sets of colors found in their neighborhoods are different. The neighbor-locating chromatic number χNL(G) is the minimum k for which G admits a neighbor-locating k-coloring. A proper k-vertex-coloring of a graph G is a locating k-coloring if for each pair of vertices x and y in the same color-class, there exists a color class Si such that d(x, Si) ̸ = d(y, Si). The locating chromatic number χL(G) is the minimum k for which G admits a locating k-coloring. It follows that χ(G) ≤ χL(G) ≤ χNL(G) for any graph G, where χ(G) is the usual chromatic number of G.
Fichier principal
Vignette du fichier
NL_coloring_CALDAM.pdf (334.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03965313 , version 1 (31-01-2023)

Identifiants

Citer

Dipayan Chakraborty, Florent Foucaud, Soumen Nandi, Sagnik Sen, D K Supraja. New Bounds and Constructions for Neighbor-Locating Colorings of Graphs. 9th International Conference on Algorithms and Discrete Applied Mathematics (CALDAM 2023), Feb 2023, Gandhinagar, India. pp.121-133, ⟨10.1007/978-3-031-25211-2_9⟩. ⟨hal-03965313⟩
54 Consultations
63 Téléchargements

Altmetric

Partager

More