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Abstract. A proper k-vertex-coloring of a graphG is a neighbor-locating
k-coloring if for each pair of vertices in the same color class, the sets of
colors found in their neighborhoods are different. The neighbor-locating
chromatic number χNL(G) is the minimum k for which G admits a
neighbor-locating k-coloring. A proper k-vertex-coloring of a graph G
is a locating k-coloring if for each pair of vertices x and y in the same
color-class, there exists a color class Si such that d(x, Si) ̸= d(y, Si). The
locating chromatic number χL(G) is the minimum k for which G admits
a locating k-coloring. It follows that χ(G) ≤ χL(G) ≤ χNL(G) for any
graph G, where χ(G) is the usual chromatic number of G.

We show that for any three integers p, q, r with 2 ≤ p ≤ q ≤ r (ex-
cept when 2 = p = q < r), there exists a connected graph Gp,q,r with
χ(Gp,q,r) = p, χL(Gp,q,r) = q and χNL(Gp,q,r) = r. We also show that
the locating chromatic number (resp., neighbor-locating chromatic num-
ber) of an induced subgraph of a graph G can be arbitrarily larger than
that of G.

Alcon et al. showed that the number n of vertices of G is bounded above
by k(2k−1 − 1), where χNL(G) = k and G is connected (this bound
is tight). When G has maximum degree ∆, they also showed that a
smaller upper-bound on n of order k∆+1 holds. We generalize the latter
by proving that if G has order n and at most an + b edges, then n is
upper-bounded by a bound of the order of k2a+1 + 2b. Moreover, we
describe constructions of such graphs which are close to reaching the
bound.

Keywords: coloring · neighbor-locating coloring · neighbor-locating chro-
matic number · identification problem · location problem.

⋆ Corresponding author



2 D. Chakraborty et al.

1 Introduction

In the area of identification/location problems, one is given a discrete structure
(such as a graph) and one wishes to identify its elements, that is, to be able
to pairwise distinguish them from each other. This can be done by construct-
ing, for example, dominating sets [15, 22] or colorings [2, 9, 13] of the graph. The
identification process may be based on distances [9, 21] or on neighborhoods [2,
22], and we may wish to distinguish all vertex pairs [15, 21, 22], only adjacent
ones [13], or those with the same color [2, 9]. This vast research area has many
applications both in practical settings like fault-diagnosis in networks [15], bio-
logical testing [18], machine learning [11] and theoretical settings such as game
analysis [12], isomorphism testing [4] or logical definability [16], to name a few.

Taking cues from the above research topics, recently, two variants of graph
coloring were introduced, namely, locating coloring [9] and neighbor-locating col-
oring [2, 5]. While the former concept has been well-studied since 2002 [5–10,
19, 20, 23–25]), our focus of study is the latter, which was introduced in 2014
in [5] under the name of adjacency locating coloring, renamed in 2020 in [2] and
studied in a few papers since then [1, 3, 14, 17].

Throughout this article, we will use the standard terminologies and notations
used in “Introduction to Graph Theory” by West [26].

Given a graph G, a (proper) k-coloring is a function f : V (G) → C, where C
is a set of k colors, such that f(u) ̸= f(v) whenever u is adjacent to v. The value
f(v) is called the color of v. The chromatic number of G, denoted by χ(G), is
the minimum k for which G admits a k-coloring.

Given a k-coloring f of G, its ith color class is the collection Si of vertices that
have received the color i. The distance between a vertex x and a set S of vertices
is given by d(x, S) = min{d(x, y) : y ∈ S}, where d(x, y) is the number of edges in
a shortest path connecting x and y. Two vertices x and y aremetric-distinguished
with respect to f if either f(x) ̸= f(y) or d(x, Si) ̸= d(y, Si) for some color
class Si. A k-coloring f of G is a locating k-coloring if any two distinct vertices
are metric-distinguished with respect to f .The locating chromatic number of G,
denoted by χL(G), is the minimum k for which G admits a locating k-coloring.

Given a k-coloring f of G, suppose that a neighbor y of a vertex x belongs
to the color class Si. In such a scenario, we say that i is a color-neighbor of x
(with respect to f). The set of all color-neighbors of x is denoted by Nf (x). Two
vertices x and y are neighbor-distinguished with respect to f if either f(x) ̸= f(y)
or Nf (x) ̸= Nf (y). A k-coloring f is neighbor-locating k-coloring if each pair
of distinct vertices are neighbor-distinguished. The neighbor-locating chromatic
number of G, denoted by χNL(G), is the minimum k for which G admits a
neighbor-locating k-coloring.

Observe that a neighbor-locating coloring is, in particular, a locating coloring.
Thus, we have the following relation among the three parameters [2]:

χ(G) ≤ χL(G) ≤ χNL(G).

Note that for complete graphs, all three parameters have the same value, that
is, equality holds in the above relation. Nevertheless, the difference between the
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pairs of values of parameters χ, χNL and χL, χNL, respectively, can be arbitrarily
large. Moreover, it was proved that for any pair p, q of integers with 3 ≤ p ≤ q,
there exists a connected graph G1 with χ(G1) = p and χNL(G1) = q [2] and
a connected graph G2 with χL(G2) = p and χNL(G2) = q [17]. The latter
of the two results positively settled a conjecture posed in [2]. We strengthen
these results by showing that for any three integers p, q, r with 2 ≤ p ≤ q ≤ r,
there exists a connected graph Gp,q,r with χ(Gp,q,r) = p, χL(Gp,q,r) = q and
χNL(Gp,q,r) = r, except when 2 = p = q < r.

One fundamental difference between coloring and locating coloring (resp.,
neighbor-locating coloring) is that the restriction of a coloring of G to an (in-
duced) subgraph H is necessarily a coloring, whereas the analogous property is
not true for locating coloring (resp., neighbor-locating coloring). Interestingly,
we show that the locating chromatic number (resp., neighbor-locating chromatic
number) of an induced subgraph H of G can be arbitrarily larger than that of
G.

Alcon et al. [2] showed that the number n of vertices of G is bounded above
by k(2k−1 − 1), where χNL(G) = k and G has no isolated vertices, and this
bound is tight. This exponential bound is reduced to a polynomial one when
G has maximum degree ∆, indeed it was further shown in [2] that the upper-

bound n ≤ k
∑∆

j=1

(
k−1
j

)
holds (for graphs with no isolated vertices and when

∆ ≤ k − 1). It was left open whether this bound is tight. The cycle rank c of
a graph G, denoted by c(G), is defined as c(G) = |E(G)| − n(G) + 1. Alcon
et al. [3] gave the upper bound n ≤ 1

2 (k
3 + k2 − 2k) + 2(c − 1) for graphs of

order n, neighbor-locating chromatic number k and cycle rank c. Further, they
also obtained tight upper bounds on the order of trees and unicyclic graphs in
terms of the neighbor-locating chromatic number [3], where a unicyclic graph is
a connected graph having exactly one cycle.

As a connected graph with cycle rank c and order n has n+c−1 edges and a
graph of order n and maximum degree ∆ has at most ∆

2 n edges, the two latter
bounds can be seen as two approaches for studying the neighbor-locating coloring
for sparse graphs. We generalize this approach by studying graphs with given
average degree, or in other words, graphs of order n having at most an+ b edges
for some constants a, b (such graphs have average degree 2a + 2b/n). For such

graphs, we prove the upper bound n ≤ 2b+ k
2a∑
i=1

(2a+1− i)
(
k−1
i

)
. Furthermore,

we show that this bound is asymptotically tight, by a construction of graphs
with an + b edges (where 2a is any positive integer and 2b any integer) and
neighbor-locating chromatic number Θ(k), whose order is Θ(k2a+1). Moreover,
when b = 0, the graphs can be taken to have maximum degree 2a. This implies
that our bound and the one from [2] are roughly tight.

In Section 2, we study the connected graphs with prescribed values of chro-
matic number, locating chromatic number and neighbor-locating chromatic num-
ber. We also study the relation between the locating chromatic number (resp.,
neighbor-locating chromatic number) of a graph and its induced subgraphs. Fi-
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nally, in Section 3 we study the density of graphs having bounded neighbor-
locating chromatic number.

2 Gaps among χ(G), χL(G) and χNL(G)

The first result we would like to prove involves three different parameters,
namely, the chromatic number, the locating chromatic number, and the neighbor-
locating chromatic number.

Theorem 1. For all 2 ≤ p ≤ q ≤ r, except when p = q = 2 and r > 2, there
exists a connected graph Gp,q,r satisfying χ(Gp,q,r) = p, χL(Gp,q,r) = q, and
χNL(Gp,q,r) = r.

Proof. First of all, let us assume that p = q = r. In this case, for Gp,q,r = Kp, it
is trivial to note that χ(Gp,q,r) = χL(Gp,q,r) = χNL(Gp,q,r) = p. This completes
the case when p = q = r.

Second of all, let us handle the case when p < q = r. If 2 = p < q = r, then
take Gp,q,r = K1,q−1. Therefore, we have χ(Gp,q,r) = 2 as it is a bipartite graph,
and it is known that χL(Gp,q,r) = χNL(Gp,q,r) = q [2, 9].

If 3 ≤ p < q = r, then we construct Gp,q,r as follows: start with a complete
graph Kp, on vertices v0, v1, · · · , vp−1, take (q−1) new vertices u1, u2, · · · , uq−1,
and make them adjacent to v0. It is trivial to note that χ(Gp,q,r) = p in this case.
Moreover, note that we need to assign q distinct colors to v0, u1, u2, · · · , uq−1

under any locating or neighbor-locating coloring. On the other hand, f(vi) = i
and f(uj) = j is a valid locating q-coloring as well as neighbor locating q-coloring
of Gp,q,r. Thus we are done with the cases when p < q = r.

Thirdly, we are going to consider the case when p = q < r. If 3 = p = q < r,
then let Gp,q,r = Cn where Cn is an odd cycle of suitable length, that is, a length
which will imply χNL(Cn) = r. It is known that such a cycle exists [1, 5]. As we
know that χ(Gp,q,r) = 3, χL(Gp,q,r) = 3 [9], and χNL(Gp,q,r) = r [1, 5], we are
done.

If 4 ≤ p = q < r, then we construct Gp,q,r as follows: start with a com-
plete graph Kp on vertices v0, v1, · · · , vp−1, and an odd cycle Cn on vertices
u0, u1, · · · , un−1, and identify the vertices v0 and u0. Moreover, we say that the
length of the odd cycle Cn is a suitable length, that is, it is of a length which
ensures χNL(Cn) = r and under any neighbor-locating r-coloring of Cn, every
color is used at least twice. It is known that such a cycle exists [1, 5]. Notice that
χ(Gp,q,r) = p and χL(Gp,q,r) = q. On the other hand, as the neighborhood of
the vertices of the cycle Cn (subgraph of Gp,q,r) doesnot change if we consider
it as an induced subgraph except for the vertex v0 = u0. Thus, we will need at
least r colors to color Cn while it is contained inside Gp,q,r as a subgraph. Hence
χNL(Gp,q,r) = r. Thus, we are done in this case also.

Finally, we are into the case when p < q < r. If p = 2, q = 3 and r > 3, then
let Gp,q,r = Pn where Pn is a path of suitable length, that is, a length which
ensures χNL(Gp,q,r) = r. It is known that such a path exists [3]. As we know



New bounds and constructions for neighbor-locating colorings of graphs 5

that χ(Gp,q,r) = 2, χ(Gp,q,r) = 3 [9] and χNL(Gp,q,r) = r [1, 5]. If p = 2 and
3 < q < r, refer [17] for this case.

If 3 = p < q < r, then we start with an odd cycle Cn on vertices v0, v1, · · · , vn−1

of a suitable length, where suitable means, a length that ensures χNL(Cn) = r
and under any neighbor-locating r-coloring of Cn, every vertex has two distinct
color-neighbors. It is known that such a cycle exists [1, 5]. Take q−1 new vertices
u1, u2, · · · , uq−1 and make all of them adjacent to v0. This so obtained graph is
Gp,q,r. It is trivial to note that χ(Gp,q,r) = 3 in this case. Note that we need to
assign q distinct colors to v0, u1, u2, · · · , uq−1 under any locating or neighbor-
locating coloring. One can show in a similar way like above that χL(Gp,q,r) = q
and χNL(Gp,q,r) = r.

If 4 ≤ p < q < r, then we start with a path Pn of a suitable length, that is,
it is of a length which ensures χNL(Pn) = r and under any neighbor-locating
r-coloring of Pn, every color is used at least twice. It is known that such a
path exists [1, 5]. Let Pn = u0u1 · · ·un−1. Now let us take a complete graph
on p vertices v0, v1, · · · , vp−1. Identify the two graphs at u0 and v0 to obtain
a new graph. Furthermore, take (q − 2) independent vertices w1, w2, · · · , wq−2

and make them adjacent to un−2. This so obtained graph is Gp,q,r. One can
show in a similar way like above that we have χ(Gp,q,r) = p, χL(Gp,q,r) = q, and
χNL(Gp,q,r) = r. ⊓⊔

Furthermore, we show that, unlike the case of chromatic number, an in-
duced subgraph can have an arbitrarily higher locating chromatic number (resp.,
neighbor-locating chromatic number) than that of the graph.

Theorem 2. For every k ≥ 0, there exists a graph Gk having an induced sub-
graph Hk such that χL(Hk)− χL(Gk) = k and χNL(Hk)− χNL(Gk) = k.

Proof. The graph Gk is constructed as follows. We start with 2k independent
vertices a1, a2, · · · , a2k and k disjoint edges b1b

′
1, b2b

′
2, · · · , bkb′k. After that we

make all the above mentioned vertices adjacent to a special vertex v to obtain
our graph Gk. Notice that v and the ais must all receive distinct colors under any
locating coloring or neighbor-locating coloring. On the other hand, the coloring
f given by f(v) = 0, f(ai) = i, f(bi) = 2i − 1, and f(b′i) = 2i is indeed a
locating coloring as well as a neighbor-locating coloring of Gk. Hence we have
χL(Gk) = χNL(Gk) = (2k + 1).

Now take Hk as the subgraph induced by v, ais and bis. It is the graph K1,3k,
and we know that all vertices must get distinct colors under any locating coloring
or neighbor-locating coloring. Hence we have χL(Hk) = χNL(Hk) = (3k + 1).

This completes the proof. ⊓⊔

3 Bounds and constructions for sparse graphs

In this section, we study the density of graphs having bounded neighbor-locating
chromatic number.
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3.1 Bounds

The first among those results provides an upper bound on the number of vertices
of a graph in terms of its neighbor-locating chromatic number. This, in particular
shows that the number of vertices of a graph G is bounded above by a polynomial
function of χNL(G).

Theorem 3. Let G be a connected graph on n vertices and m edges such that
m ≤ an+ b, where 2a is a positive integer and 2b is an integer. If χNL(G) = k,
then

n ≤ 2b+ k

2a∑
i=1

(2a+ 1− i)

(
k − 1

i

)
.

In particular, any graph whose order attains the upper bound must be of maxi-
mum degree 2a+ 1 and with exactly k

(
k−1
i

)
number of vertices of degree i.

Proof. Let Di and di denote the set and the number of vertices in G having
degree equal to i, respectively, and let D+

i and d+i denote the set and the number
of vertices in G having degree at least i, for all i ≥ 1. Using the handshaking
lemma, we know that∑

v∈V (G)

deg(v) = 2|E(G)| = 2m ≤ 2(an+ b).

Notice that, as G is connected, and hence does not have any vertex of degree 0,
it is possible to write

∑
v∈V (G)

deg(v) =

2a∑
i=1

i · di +
∑

v∈D+
2a+1

deg(v).

Moreover, the number of vertices of G can be expressed as

n = (d1 + d2 + · · ·+ d2a) + d+2a+1 = d+2a+1 +

2a∑
i=1

di.

Therefore, combining the above equations and inequalities, we have

2a∑
i=1

i · di +
∑

v∈D+
2a+1

deg(v) ≤ 2b+ 2a

(
d+2a+1 +

2a∑
i=1

di

)

which implies

d+2a+1 ≤
∑

v∈D+
2a+1

(deg(v)− 2a) ≤

 ∑
v∈D+

2a+1

deg(v)

−2ad+2a+1 ≤ 2b+

2a∑
i=1

(2a−i)di
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since there are exactly d+2a+1 terms in the summation
∑

v∈D+
2a+1

(deg(v)− 2a)

where each term is greater than or equal to 1, as deg(v) ≥ 2a+1 for all v ∈ D+
2a+1.

Let f be any neighbor-locating k-coloring of G. Consider an ordered pair
(f(u), Nf (u)), where u is a vertex having degree at most s. Thus, u may receive
one of the k available colors, while its color neighborhood may consist of at most
s of the remaining (k − 1) colors. Thus, there are at most k

∑s
i=1

(
k−1
i

)
choices

for the ordered pair (f(u), Nf (u)). As for any two vertices u, v of degree at most
s, the following ordered pairs (f(u), Nf (u)) and (f(v), Nf (v)) must be distinct,
we have

s∑
i=1

di ≤ k

s∑
i=1

(
k − 1

i

)
.

Using the above relation, we can show that

2a∑
i=1

(2a+1−i)di =

2a∑
s=1

(
s∑

i=1

di

)
≤

2a∑
s=1

(
k

s∑
i=1

(
k − 1

i

))
= k

2a∑
i=1

(2a+1−i)

(
k − 1

i

)
.

As

2a∑
i=1

(2a+ 1− i)di =

2a∑
i=1

di +

2a∑
i=1

(2a− i)di and d+2a+1 ≤ 2b+

2a∑
i=1

(2a− i)di,

we have

n = d+2a+1 +

2a∑
i=1

di ≤ 2b+ k

2a∑
i=1

(2a+ 1− i)

(
k − 1

i

)
.

This completes the first part of the proof.
For the proof of the second part of the Theorem, we notice that if the order

of a graph G∗ attains the upper bound, then equality holds in all of the above
inequations. In particular, we must have d+2a+1 =

∑
v∈D+

2a+1
(deg(v)− 2a) which

implies that G∗ cannot have a vertex of degree more than 2a+ 1. Moreover, we
also have the following equality.

s∑
i=1

di = k

s∑
i=1

(
k − 1

i

)
for s = 1, 2, . . . , 2a+ 1.

This proves that G∗ has exactly k
(
k−1
i

)
vertices of degree i. ⊓⊔

Next we are going to present some immediate corollaries of Theorem 3. A
cactus is a connected graph in which no two cycles share a common edge.

Corollary 4. Let G be a cactus on n vertices and m edges. If χNL(G) = k,
then

n ≤ k4 + 11k2 − 12k − 6

6
.

Moreover, if the cactus has exactly t cycles, then we have

n ≤ 2(t− 1) +
k3 + k2 − 2k

2
.
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Proof. Observe that G has at most 3(n−1)
2 edges. So, by substituting a = 3

2 and
b = − 3

2 in the bound for n established in Theorem 3, we have

n ≤ 2b+ k

2a∑
i=1

(2a+ 1− i)

(
k − 1

i

)
= −3 + k

3∑
i=1

(4− i)

(
k − 1

i

)
= −3 + 3k

(
k − 1

1

)
+ 2k

(
k − 1

2

)
+ k

(
k − 1

3

)
=

k4 + 11k2 − 12k − 6

6
.

Note that, if the cactus G has has exactly t cycles, then G has exactly (n+ t−1)
edges. Hence, replacing a = 1 and b = (t− 1) in the bound for n established in
Theorem 3, we obtain the required bound for the cactus. ⊓⊔

A graph is t-degenerate if its every subgraph has a vertex of degree at most
t.

Corollary 5. Let G be a t-degenerate graph on n vertices and m edges. If
χNL(G) = k, then

n ≤ k

2t∑
i=1

(2t+ 1− i)

(
k − 1

i

)
− t(t+ 1).

Proof. Observe that the number of edges in a t-degenerate graph is m ≤ tn −
t(t+1)

2 . Substituting a = t and b = − t(t+1)
2 in the bound for n established in

Theorem 3, we obtain the required bound. ⊓⊔

A planar graph is 5-degenerate, thus using the above corollary, we know that
for a planar graph G one can obtain an upper bound of |V (G)|. However, since
|E(G)| ≤ 3|V (G)| − 6, we are able to obtain a better bound.

Corollary 6. Let G be a planar graph on n vertices and m edges. If χNL(G) =
k, then

n ≤ k

6∑
i=1

(7− i)

(
k − 1

i

)
− 12.

Proof. Note that the number of edges in a planar graph is at most 3n − 6.
Substituting a = 3 and b = −6 in the bound for n established in Theorem 3, we
get the required bound. ⊓⊔

3.2 Tightness

Next we show the asymptotic tightness of Theorem 3. To that end, we will prove
the following result.
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Theorem 7. Let 2a be a positive integer and let 2b be an integer. Then, there
exists a graph G on n vertices and m edges satisfying m ≤ an + b such that
n = Θ(k2a+1) and χNL(G) = Θ(k). Moreover, when b = 0, G can be taken to be
of maximum degree 2a.

The proof of this theorem is contained within a number of observations and
lemmas. Also, the proof is constructive, and the constructions depend on par-
ticular partial colorings. Therefore, we are going to present a series of graph
constructions, their particular colorings, and their structural properties. We are
also going to present the supporting observations and lemmas in the following.

Lemma 8. Let us consider a (p × q) matrix whose ijth entry is mi,j, where
p < q. Let M be a complete graph whose vertices are the entries of the matrix.
Then there exists a matching of M satisfying the following conditions:

(i) The endpoints of an edge of the matching are from different columns.
(ii) Let e1 and e2 be two edges of the matching. If one endpoint of e1 and e2

are from the ith columns, then the other endpoints of them must belong to
distinct columns.

(iii) The matching saturates all but at most one vertex of M per column.

Proof. Consider the permutation σ = (1 2 · · · q). The matching consists of edges
of the type m(2i−1),jm2i,σi(j) for all i ∈ {1, 2, · · · , ⌊p

2⌋} and j ∈ {1, 2, · · · , q}. We
will show that this matching satisfies all listed conditions.

Observe that, a typical edge of the matching is of the form m(2i−1),jm2i,σi(j).
As the second co-ordinates of the subscript of the endpoints of the said edge is
different, condition (i) from the statement is verified.

Suppose that there are two edges of the typem(2i−1),jm2i,σi(j) andm(2i′−1),j′

m2i′,σi′ (j′). If m(2i−1),j and m(2i′−1),j′ are from the same column, that is, j = j′,

then we must have i ̸= i′ as they are different vertices. Thus σi(j) ̸= σi′(j) =
σi′(j′) as i ̸= i′. If m(2i−1),j and m2i′,σi′ (j′) are from the same column, then we

have j = σi′(j′). Moreover, if we have j′ = σi(j), then it will imply that

j = σi′(σi(j)) = σi+i′(j).

This is only possible if q|(i + i′), which is not possible as i, i′ ∈ {1, 2, · · · , ⌊p
2⌋}.

Therefore, we have verified condition (ii) of the statement.
Notice that, the matching saturates all the vertices of M when p is even,

whereas it saturates all except the vertices in the pth row of the matrix when p
is odd. This verifies condition (iii) of the statement. ⊓⊔

Corollary 9. Let G be a graph with an independent set M of size (p × q),
where M = {mij : 1 ≤ i ≤ p, 1 ≤ j ≤ q} and p < q. Moreover, let ϕ be a
(k′ + q)-coloring of G satisfying the following conditions:

1. k′ + 1 ≤ ϕ(x) ≤ k′ + q if and only if x ∈ M ,
2. x and y are neighbor-distinguished unless both belong to M ,
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3. ϕ(mij) = k′ + j.

Then it is possible to find spanning supergraph G′ of G by adding a matching
between the vertices of M which will make ϕ a neighbor-locating (k′+q)-coloring
of G′.

Proof. First of all build a matrix whose ijth entry is the vertex mij . After that,
build a complete graph whose vertices are entries of this matrix. Now using
Lemma 8, we can find a matching of this complete graph that satisfies the
three conditions mentioned in the statement of Lemma 8. We construct G′ by
including exactly the edges corresponding to the edges of the matching, between
the vertices of M . We want to show that after adding these edges and obtaining
G′, indeed ϕ is a neighbor-locating (k′ + q)-coloring of G′.

Notice that by the definition of ϕ, (k′ + q) colors are used. So it is enough
to show that the vertices of G′ are neighbor-distinguished with respect to ϕ.
To be exact, it is enough to show that two vertices x, y from M are neighbor-
distinguished with respect to ϕ in G′. If ϕ(x) = ϕ(y), then they must have
different color-neighborhood inside M according to the conditions of the match-
ing. This is enough to make x, y neighbor-distinguished. ⊓⊔

Now we are ready to present our iterative construction. However, given the
involved nature of it, we need some specific nomenclatures to describe it. For
convenience, we will list down some points to describe the whole construction.

(i) An i-triplet is a 3-tuple of the type (Gi, ϕi, Xi) where Gi is a graph, ϕi is a
neighbor-locating (ik)-coloring of Gi, Xi is a set of (i+1)-tuples of vertices
of Gi, each having non-repeating elements. Also, two (i + 1)-tuples from
Xi do not have any entries in common.

(ii) Let us describe the 1-triplet (G1, ϕ1, X1) explicitly. Here G1 is the path

Pt = v1v2 · · · vt on t vertices where t = 4
⌊
k(k−1)(k−2)+4

8

⌋
. As

(k − 1)2(k − 2)

2
< 4

⌊
k(k − 1)(k − 2) + 4

8

⌋
≤ k2(k − 1)

2
,

we must have χNL(Pt) = k (see [2]). Let ϕ1 be any neighbor-locating k-
coloring of G1 and

X1 = {(vi−1, vi+1) : i ≡ 2, 3 (mod 4)}.

(iii) Suppose an i-triplet (Gi, ϕi, Xi) is given. We will (partially) describe a way
to construct an (i+1)-triplet from it. To do so, first we will construct an in-
termediate graph G′

i+1 as follows: for each (i+1)-tuple (x1, x2, · · · , xi+1) ∈
Xi we will add a new vertex xi+2 adjacent to each vertex from the (i+1)-
tuple. Moreover, (x1, x2, · · · , xi+1, xi+2) is designated as an (i + 2)-tuple
in G′

i+1. After that, we will take k copies of G′
i+1 and call this so-obtained

graph as G′′
i+1. Furthermore, we will extend ϕi to a function ϕi+1 by as-

signing the color (ik + j) to the new vertices from the jth copy of G′
i+1.

The copies of the (i+ 2)-tuples are the (i+ 2)-tuples of G′′
i+1.
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(iv) Consider the (i+ 1)-triplet (G′′
i+1, ϕi+1, X

′′
i+1) where X ′′

i+1 denotes the set
of all (i+2)-tuples of G′′

i+1. The color of an (i+2)-tuple (x1, x2, · · · , xi+2)
is the set

C((x1, x2, · · · , xi+2)) = {ϕi(x1), ϕi(x2), · · · , ϕi(xi+2)}.

Let us partition the set of new vertices based on the colors used on the
elements (all but the last one) of the (i+2)-tuple of which it is (uniquely)
part of. To be explicit, the last elements of two (i + 2)-tuples are in the
same partition if and only if they have the same color. Let this partition
be denoted by Xi1, Xi2, · · · , Xisi , for some integer si.

(v) First fix a partition Xir of Xi. Next construct a matrix with its ℓth column
having vertices from Xir as its entries if they are also from the ℓth copy
of G′

i+1 in G′′
i+1. Thus the matrix is a (p× q) matrix where p = |Xir| and

q = k. We are going to show that, p < q. However, for convenience, we will
defer it to a later part (Lemma 10).

(vi) Let us delete all the new vertices from G′′
i+1 except for the ones in Xir.

This graph has the exact same properties of the graph G from Corollary 9
where Xir plays the role of the independent set M . Thus it is possible to
add a matching and extend the coloring (like in Corollary 9). We do that
for each value of r and add the corresponding matching to our graph G′′

i+1.
After adding all such matchings, the graph we obtain is Gi+1.

Lemma 10. We have |Xir| < k, where Xir is as in Item(v) of the above list.

Proof. It is easy to calculate that the set of 2-tuples having the same color in
G1 is strictly less than k. After that we are done by induction. ⊓⊔

Lemma 11. The function ϕi+1 is a neighbor-locating coloring of Gi+1.

Proof. The function ϕi+1 is constructed from ϕi, alongside constructing the
triplet Gi+1 from Gi. While constructing, we use the same steps from that of
Corollary 9. Thus, the newly colored vertices become neighbor-distinguished in
Gi+1 under ϕi+1. ⊓⊔

The above two lemmas validate the correctness of the iterative construction
of Gis. However, it remains showing how Gis help us prove our result. To do so,
let us prove certain properties of Gis.

Lemma 12. The graph Gi is not regular and has maximum degree (i+ 1).

Proof. As we have started with a path, our G1 has maximum degree 2 and is
not regular. In the iteration step for constructing the graph Gi+1 from Gi, the
degree of an old vertex (or its copy) can increase at most by 1, while a new
vertex of Gi+1 is adjacent to exactly (i + 1) old vertices and at most one new
vertex. Hence, a new vertex in Gi+1 can have degree at most (i+ 2). Therefore,
the proof is done by induction. ⊓⊔
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Finally, we are ready to prove Theorem 7.

Proof of Theorem 7. Given a and b, to build the example that will prove the
theorem, one can consider G = G2a+1. ⊓⊔
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