A Mixed-Signal Oscillatory Neural Network for Scalable Analog Computations in Phase Domain - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2023

A Mixed-Signal Oscillatory Neural Network for Scalable Analog Computations in Phase Domain

Abstract

Digital electronics based on von Neumann's architecture are reaching their limits to solve large scale problems essentially due to the memory fetching. Instead, recent efforts to bring the memory near the computation have enabled highly parallel computations at low energy cost. Oscillatory Neural Network (ONN) is one example of in-memory analog computing paradigm consisting of coupled oscillating neurons. When implemented in hardware, ONNs naturally perform gradient descent of an energy landscape that makes them particularly suited for solving optimization problems. Although the ONN computational capability and its link with the Ising model are known for decades, implementing a large-scale ONN remains difficult. Beyond the oscillators' variations, there are still design challenges such as having compact, programmable synapses and a modular architecture for solving large problem instances. In this paper, we propose a mixed-signal architecture named Saturated Kuramoto ONN (SKONN) that leverages both analog and digital domains for efficient ONN hardware implementation. SKONN computes in the analog phase domain while propagating the information digitally to facilitate scaling up the ONN size. SKONN's separation between computation and propagation enhances the robustness and enables a feed-forward phase propagation that is showcased for the first time. Moreover, the SKONN architecture leads to unique binarizing dynamics that are particularly suitable for solving NP-hard combinatorial optimization problems such as finding the Weighted Max-cut of a graph. We find that SKONN's accuracy is as good as the Goemans-Williamson 0.878-approximation algorithm for Max-cut; whereas SKONN's computation time only grows logarithmically. We report on Weighted Max-cut experiments using a 9-neuron SKONN proof-of-concept on PCB. Finally, we present a low-power 16-neuron SKONN integrated circuit and illustrate SKONN's feed-forward ability while computing the XOR function.
Fichier principal
Vignette du fichier
SKONN_230128_arxiv.pdf (3.99 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Licence
Copyright

Dates and versions

hal-03961010 , version 1 (31-01-2023)

Licence

Copyright

Identifiers

  • HAL Id : hal-03961010 , version 1

Cite

Corentin Delacour, Stefania Carapezzi, Gabriele Boschetto, Madeleine Abernot, Thierry Gil, et al.. A Mixed-Signal Oscillatory Neural Network for Scalable Analog Computations in Phase Domain. 2023. ⟨hal-03961010⟩
241 View
205 Download

Share

Gmail Mastodon Facebook X LinkedIn More