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ABSTRACT

Digital electronics based on von Neumann’s architecture are reaching their limits to solve large-
scale problems essentially due to the memory fetching. Instead, recent efforts to bring the memory
near the computation have enabled highly parallel computations at low energy cost. Oscillatory
Neural Network (ONN) is one example of in-memory analog computing paradigm consisting of
coupled oscillating neurons. When implemented in hardware, ONNs naturally perform gradient
descent of an energy landscape that makes them particularly suited for solving optimization problems.
Although the ONN computational capability and its link with the Ising model are known for decades,
implementing a large-scale ONN remains difficult. Beyond the oscillators’ variations, there are still
design challenges such as having compact, programmable synapses and a modular architecture for
solving large problem instances.
In this paper, we propose a mixed-signal architecture named Saturated Kuramoto ONN (SKONN)
that leverages both analog and digital domains for efficient ONN hardware implementation. SKONN
computes in the analog phase domain while propagating the information digitally to facilitate scaling
up the ONN size. SKONN’s separation between computation and propagation enhances the robustness
and enables a feed-forward phase propagation that is showcased for the first time. Moreover, the
SKONN architecture leads to unique binarizing dynamics that are particularly suitable for solving
NP-hard combinatorial optimization problems such as finding the Weighted Max-cut of a graph. We
find that SKONN’s accuracy is as good as the Goemans-Williamson 0.878-approximation algorithm
for Max-cut; whereas SKONN’s computation time only grows logarithmically. We report on Weighted
Max-cut experiments using a 9-neuron SKONN proof-of-concept on PCB. Finally, we present a
low-power 16-neuron SKONN integrated circuit and illustrate SKONN’s feed-forward ability while
computing the XOR function.

Keywords Oscillatory Neural Network, Analog Computing, Mixed-signal design, NP-hard problems

1 Introduction

1.1 Oscillatory Neural Networks

The synchronization of oscillators is a fascinating phenomenon studied for a long time. In the XVII century, Huygens
noticed that two identical clocks attached to the same beam synchronize to an anti-phase state where the two pendulums
have the same frequency and move in opposite directions [1]. It is in the 1950s that scientists imagined computing
with coupled oscillators. The main motivation at that time was to replace the bulky and slow vacuum tubes used for



Table 1: State-of-the-art ONN architectures

Goto [3] Jackson
et. al. [5]

Wang
et. al [17].

Chou
et. al [18].

Bashar
et. al [19].

Dutta
et. al [9].

Ahmed
et. al [11].

Graber
et. al [20]. This work

Size 9600 100 240 4 30 8 560 400 16

Oscillator Analog LC Digital Analog LC Analog LC Analog
relaxation

Analog
relaxation
(PTNO)

Ring
Oscillator

Analog
differential

Analog
relaxation

SHIL
or

Calibration
Yes Yes Yes Yes Yes Yes No Yes Yes

Coupling Transformers Resistors Resistors Resistors Capacitors Capacitors
Resistors B2B inverters Current sources

with DACs Capacitors

Signed
weights No Yes Yes Yes No No Yes Yes Yes

Weight
precision 1 bit 5 bits 8 bits 5 bits 1 bit - -1,0,+1 6 bits 5 bits

Modular Yes - Yes - - - Yes Yes Yes
Feedforward Yes Yes - Yes No No No Yes Yes
Initial phase

control Yes Yes - - - - - No Yes

Application Digital logic Pattern
recognition COP COP COP COP COP COP

COP
Image

processing

digital computations. In 1954, von Neumann proposed in a patent to use LC resonant circuits driven by a harmonic
signal to compute digital functions [2]. At the same time in Japan, Goto developed a similar paradigm called the
parametron, which consists of an LC resonant circuit oscillating at one-half the driving frequency. Using transformers
as coupling elements, Goto was able to build multiple large-scale digital computers with up to 9600 parametrons in
1958 [3]. However, parametrons became obsolete in the 1960s due to the advent of transistors that were faster and more
scalable. [4].

With the emergence of Artificial Intelligence (AI) and neural networks, researchers brought back the idea of phase
computing to solve complex tasks like pattern recognition [5, 6, 7] and NP-hard combinatorial optimization problems
(COPs) [8, 9, 10, 11] that are challenging for conventional digital electronics. Inspired by Hopfield Neural Networks
(HNN) [12] and by the Kuramoto model [13], Aoyagi [14], Hoppensteadt and Izhikevich [15] have proposed a
computing paradigm called Oscillatory Neural Networks (ONN) that models the phase dynamics of coupled oscillators.
ONNs are particularly interesting for solving COPs as they are dynamical systems that converge naturally to fixed points
corresponding to the minima of some energy landscape. In other words, there is no external control that makes the
neuron state evolve. Instead, all the phases evolve in parallel and in continuous time, enabling fast and energy-efficient
inferences in the analog domain [16].

1.2 State-of-the-art ONNs

Recently, a new interest in ONN has risen thanks to the emergence of novel oscillating devices that enable the fabrication
of efficient ONNs [21]. Such as, spin-torque and spin Hall devices [22, 23], micro-electromechanical systems [24, 25],
and transition metal oxide devices are all candidates for implementing ONNs using their oscillatory behavior and
synchronization properties [6, 9, 26, 27, 28]. Beyond-CMOS devices are promising as they generally allow a compact
oscillator design using a single device that could be scaled down to the nanoscale. Nevertheless, CMOS-based ONNs
benefit from the mature CMOS technology which enables rapid ONN development and facilitates its co-integration
with conventional digital circuits [5, 11, 19, 20]. In this work, we focus on ONNs that compute in phase domain,
i.e. with neurons that oscillate at the same frequency. However, note that it is also possible to compute with various
frequencies [29, 30]. Regardless of the technology, we identify three important criteria for designing a competitive
ONN that computes in phase domain. It should have:

1. Homogeneous oscillating frequencies
2. Compact and linearly programmable signed synapses
3. A scalable architecture

Even with the mature CMOS technology, achieving perfect matching between hundreds of oscillators is unfeasible
for small-scale oscillators due to device-to-device variations. Hopefully, some techniques can overcome frequency
mismatches such as calibration or Sub Harmonic Injection Locking (SHIL). SHIL consists in driving the oscillators
with a harmonic signal that can lock to a Fourier harmonic of the oscillating signal [31]. In case of large frequency
mismatches, the injection of a strong SHIL signal ensures phase locking among the oscillators [32, 33]. The second
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criterion promotes synapses that are compact, programmable with signed weights, and have a value proportional
to their conceptual weight. Some architectures can lead to a non-linear mapping between the conceptual weights
and their hardware implementation [34], or even be unknown due to the high complexity of the dynamics. Finally,
the ONN architecture must be scalable to compete with conventional computing and solve large-scale problems
involving thousands or millions of synapses. For this reason, we believe that the ONN architecture should be modular,
i.e. to support the interconnection of smaller sub-ONNs to build a larger system and avoid the implementation of a
fully-connected network.

Table 1 presents the state-of-the-art ONN architectures and their features. We only consider ONN computing in the
phase domain and based on electrical oscillators. For solving COPs, a general approach is to map the input graph to the
ONN where vertices are oscillators, and edges are synapses. Some architectures such as [19, 9] are dedicated to finding
the maximum cut of a graph with weights of the same sign, as the synapses only implement negative weights. The
main drawback is that both coupling capacitors and resistors are required to program negative and positive weights,
respectively. Other architectures using differential LC oscillators enable signed weights using resistors only [17, 18] but
are not scalable on chip due to the bulky LC tanks and resistors. Digital ONNs are promising as they are scalable and
modular, as demonstrated by Ahmed et. al. with their 560 ring oscillators chip [11]. A recent promising fully-analog
architecture for solving COPs has also been proposed by Graber et. al. [20] that consists of 400 oscillators coupled with
nearest neighbors.

1.3 A mixed-signal approach

In this work, we introduce a new mixed-signal ONN architecture, named Saturated Kuramoto Oscillatory Neural
Network (SKONN) that leverages both analog and digital domains to satisfy the three ONN design criteria. SKONN
takes inspiration from the state-of-the-art analog ONN architectures for which the dynamics evolve naturally in
continuous time and can easily be described by phase models like Kuramoto’s or Izhikevich’s [13], thus facilitating the
exploration of potential applications. SKONN’s main novelty consists in setting the computation and propagation in the
analog and digital domains, respectively. Fig. 1 illustrates SKONN with 4 fully-coupled neurons. Digital propagation
has several advantages such as greater noise immunity, a higher fan-out, and smoother interfacing with other digital
circuits. Moreover, the separation between the computation and propagation induces a natural implementation of
feed-forward synapses that have never been implemented in literature, to the best of our knowledge.

The paper is organized as follows. First, SKONN architecture is described and its dynamics are derived, highlighting
the link between the Kuramoto model and SKONN, and its ability to solve NP-hard Weighted Max-cut problems. Then,
we introduce a SKONN-PCB proof-of-concept that solves Weighted Max-cut problems with 9 nodes. A 16-neuron
65nm-ASIC chip recently taped out is also presented, demonstrating SKONN feed-forward ability with a XOR example.
Finally, we report on SKONN’s performance scaling in solving the Weighted Max-cut problem, and benchmark with
state-of-the-art solvers on G-SET instances.

2 Methods

2.1 SKONN architecture overview

2.1.1 A mixed-signal oscillating neuron

A SKONN neuron consists of a relaxation oscillator producing analog and digital oscillations with period T at its input
and output nodes, respectively. Fig.2a shows the block diagram of the oscillating neuron. It consists of a hysteresis
circuit that commands a shaper block to charge and discharge a capacitor CL with constant current Ibias. The voltage
across the capacitor V in

i is fed back to the hysteresis comparator that switches between VDD and 0 when V in
i reaches

the thresholds VH and VL, thus producing oscillations. V out
i holds the phase state in the digital domain, whereas V in

i is
the analog evolution of the oscillation. Note that the input impedance of the oscillator is purely capacitive in the ideal
case so that any charge sent to the input node causes an instantaneous phase shift. The analog waveform V in

i supports
the computation and is separated from the digital propagation V out

i , enabling a feed-forward propagation of the phase
information.

Fig.2c shows an example of feed-forward propagation between two oscillators. The computation occurs in the analog
domain at the input node of neuron i that gathers the output signals from neuron j. The oscillator output signal is a
square digital-like signal that carries the oscillator state and evolves until the phase dynamics settle to a fixed point.
Choosing a triangular waveform at the analog input leads to simple yet rich phase dynamics that are similar to the
Kuramoto model, which is known to have interesting computational properties [13]. Moreover, it skips the use of bulky
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Figure 1: Illustration of a SKONN architecture composed of 4 oscillators and 16 synapses. Neuronal input and output
lines are laid out vertically and horizontally, respectively. For neuron i, the input V in

i (t) and output V out
i (t) are

synchronized such that V out
i (t) commands the generation of V in

i (t). A synapse Sij consists of a capacitor Cij that
converts the digital signal V out

j (t) in current spikes sent to the input node i. The multiplexer sets the weight sign by
selecting V out

j (t) or V out
j (t) = V out

j (t− T/2). The triangular analog input oscillation V in
i (t) receives the synaptic

current spikes, i.e. the charges Qij , that shift the phase ϕi.
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Figure 2: a) The SKONN neuron is a relaxation oscillator composed of two blocks: the hysteresis circuit that holds the
neuron state and drives the shaper stage. The latter produces an analog triangular waveform at the input whereas the
hysteresis block outputs a digital waveform. b) The SKONN synapse consists of a capacitor bank setting the weight
amplitude. A multiplexer selects V out

j or V out
j to set the weight sign. c) SKONN principle of computation illustrated

with a negative weight. The multiplexer selects V out
j that is fed into Cij , creating current spikes Iij aligned with the

rising and falling edges of V out
j . The injected charges ±Qij to V in

i induce voltage jumps ±δV that cause time shifts
δt. After a few cycles, the two oscillators lock to ∆ϕij = π.

LC tanks needed for producing sinusoidal oscillations. The neuron voltage dynamics are expressed in Appendix A for
completeness, although this work rather focuses on phase dynamics that are more suitable to study phase-based ONNs.

2.1.2 Synaptic design and weight sign

A SKONN synapse Sij consists of a capacitor Cij that transmits current pulses, i.e. charges Qij , from the output of
oscillator j to the input of oscillator i. Cij can easily be programmed using a capacitor bank and a register, as shown in
Fig. 2b. Instead of propagating the sensitive analog signal, SKONN only transmits the oscillator phase information
in a robust manner. The digital output voltage V out

j is applied to Cij that creates current spikes holding the phase
information ϕj . The synaptic spike train can be expressed as follows:

Iij = Cij

(dV out
j

dt
− dV in

i

dt

)
(1)

The synaptic capacitor can be thought of as a digital-to-analog phase converter. The synaptic weight consists of the
capacitance value Cij that linearly modulates the charge sent to the oscillating input node i as Qij = CijVDD, thus
inducing phase shifts in the oscillation i as shown in Fig.2c. To implement a negative weight, the complementary of
V out
j defined as V out

j (t) = V out
j (t− T/2) is selected using a multiplexer and applied to Cij . Compared to resistors,

synaptic capacitors have several advantages for upscaling the ONN:

1. ONN computation models are generally based on the weak coupling assumption [13, 8] and necessitate weak
synaptic signals. This means the ONN needs either large coupling resistors or small capacitors, the latter being
much more scalable in a chip.

2. For a limited neuron output strength, the only way of increasing the synaptic fan-out is to reduce the synaptic
current, which again would lead to bulky resistors or smaller capacitors in the case of SKONN.

2.2 SKONN phase dynamics

2.2.1 2 coupled oscillators

SKONN computing mechanism is illustrated in Fig.2c with the case of a neuron j feeding its phase to another neuron
i in a feed-forward manner with a negative weight. This means that V out

j is selected by the multiplexer and applied
to Cij , thus creating current spikes +Qijδ(t) and −Qijδ(t− T/2) that are aligned with the rising and falling edges
of V out

j , respectively. Each injected charge ±Qij induces a voltage jump δV = ±Qij/Ceq at the input node, with
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Figure 3: (a) Illustration of a neuron that drives a second neuron in a feed-forward manner. The multiplexer sets the
weight sign and the capacitor Cij converts the digital signal V out

j (t) into current spikes Iij(t) that induce phase shifts
of the input V in

i (t). b) Transistor-level transient simulation with a positive weight Wij > 0. The second phase catches
up the first one after few cycles such that ∆ϕij ≈ 0◦. (c) Simulated dynamics with a negative weight Wij < 0. The
second phase is pushed such that ∆ϕij ≈ 180◦ after few cycles.

Ceq = CL + Cij . As V in
i is a triangular waveform, δV provokes a time shift δt = ±CeqδV/Ibias, where ± indicates

here the sign of V in
i ’s slope. Knowing the period of the triangular oscillation T = 2Ceq∆V/Ibias where ∆V is V in

i ’s
peak-to-peak amplitude, we can then express the phase shift related to a single current spike:

δϕ = 2π
δt

T

= π
±Qij

Ceq∆V

= π
±Cij

Ceq

VDD

∆V

≈ π
±Cij

CL

VDD

∆V
if CL >> Cij (2)

SKONN’s unique feature consists of this simple relation (2) between coupling capacitors and phase shift, thus enabling
well-controlled phase dynamics and a precise weight mapping to the coupling capacitor Cij . As we will see later, the
quantity β0 = |δϕ/Qij | provides the neuron phase sensitivity with respect to the charge perturbation. It is linked to the
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Phase Perturbation Vector (PPV) of the oscillator which is key for deriving SKONN’s phase dynamics [32]. SKONN’s
PPV is defined and derived in Appendix B.

Two coupled oscillators converge either in- or out-of-phase, depending on the synaptic sign. To show this property, we
use SKONN’s phase dynamics that are derived in Appendix C using the PPV formalism [32]. Under the weak coupling
assumption (Cij << CL), the phase dynamics of oscillator i can be expressed as follows:

d

dt
ϕi = 2β0

Qij

T
square(ϕi − ϕj) (3)

With the 2π-periodic function

square(θ) =
{−1, if 0 < θ < π

+1, if π < θ < 2π
(4)

The phase fixed points can be derived from (3) and are expressed in the next proposition.

Proposition 1. If the injected charge Qij ̸= 0 then the two SKONN oscillators admit a unique stable fixed-point
∆ϕ∗ = (ϕi − ϕj)

∗ such that

∆ϕ∗ =

{
0, if Qij > 0

π, if Qij < 0
(5)

The proof is shown in Appendix C. In other words, propagating a spike train defined as (1) induces an in-phase or
out-of-phase locking, depending on the polarity of Qij . Each current spike produces a local phase shift to the analog
input oscillation, resulting in an average phase shift ∆ϕ = ±2β0Qij after each cycle (3). Fig.3b shows a transistor-level
simulation of the positive weight case. Iij perturbs V in

i until the oscillators converge in phase. Similarly, Fig.3c shows
the same configuration with a negative weight and the oscillators are out-of-phase.

Note that the phases measured from the rising edges of V out
i and V out

j are slightly shifted from the theoretical fixed
points (5). This is mainly due to the limited bandwidth of the hysteresis block which does not switch instantaneously
when reaching its thresholds. This non-ideality can be compensated and is further discussed in Appendix E. Interestingly,
this phase shift disappears with symmetric synapses as both oscillators are equally delayed (see Fig.6c).

2.2.2 N coupled oscillators

The phase dynamics of N sinusoidal coupled oscillators are often expressed using the Kuramoto model [13, 15, 8]:

d

dt
ϕi = −ω0

N∑
j=1

Kij sin
(
ϕi − ϕj

)
(6)

Where ω0 is the frequency in rad/s and Kij the coupling coefficients. Similarly, we derive SKONN’s phase dynamics
for N oscillators as follows:

d

dt
ϕi = ω0

VDD

∆V

N∑
j=1

Cij

CL
square

(
ϕi − ϕj

)
(7)

Where we replaced β0 and Qij from (3) by their expressions β0 = π/(∆V CL) and Qij = Cij VDD. The derivation is
detailed in Appendix C. VDD is the digital voltage swing, ∆V is the peak-to-peak triangular voltage amplitude at the
input, Cij is the synaptic capacitance value, and CL is the neuron input capacitance.

SKONN’s phase dynamics are very similar to the Kuramoto model (6) except for its sinusoidal function replaced by a
saturated square function in this work. It induces a binarization behavior that is useful for solving some optimization
problems as shown later.

Proposition 2. Consider a neuron i of degree D, i.e. driven by D neurons j with weighted charges Qij ∈ {−q,+q}
q ̸= 0.

1. If D is odd and dϕi/dt = 0, then there is at least one input neuron j such that (ϕi − ϕj) is a multiple of π.

2. If D is even, then there is at least one ϕi and one set of input phase ϕj such that dϕi/dt = 0 and ∀j (ϕi − ϕj)
is not a multiple of π.

The proof is shown in Appendix C. Interestingly, odd-degree neurons will phase-lock in- or out-of-phase with at least
one input phase. The odd-degree property will be advantageous for solving some optimization problems on graphs,
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(a)

(b)

Kuramoto SKONNEven-degree neurons: 
D = 2

Even and odd-degree neurons: 

D2 = 2

D3 = 3

Figure 4: a) Three oscillators coupled by negative weights. The right-hand-side plots show the Kuramoto and SKONN
distributions of the final phases for 1000 random initializations (uniform distribution). The Kuramoto-ONN converges to
two fixed points (ϕ∗

2, ϕ
∗
3)=(120°, 240°) or (ϕ∗

2, ϕ
∗
3)=(240°, 120°). Whereas SKONN phases can settle to various analog

phases as each oscillators has an even number of input synapses D. b) Five coupled oscillators where D1, D3 and D2,
D4, D5 are odd and even, respectively. The Kuramoto-ONN settles to two fixed points (ϕ∗

2, ϕ
∗
3, ϕ

∗
4, ϕ

∗
5) ≈(248°, 137°,

331°, 166°) or (ϕ∗
2, ϕ

∗
3, ϕ

∗
4, ϕ

∗
5) ≈(112°, 223°, 29°, 194°). SKONN tends to binarize phases except ϕ2 that can rather

converge to any phase value.

as shown in the section 3.4. On another hand, an even number of inputs rather leads to a relaxed scenario where the
neuron can settle into an infinite number of phases and could prevent phase binarization.

For instance, Fig.4a shows a graph implemented with three fully-connected neurons with D=2. In this simulation, we
randomly initialized the phases, numerically solved (7) and measured the final phases with respect to the reference ϕ1.
It can be seen from the distribution of final phases for 1000 trials that SKONN can settle to arbitrary analog phases,
whereas the Kuramoto-ONN always converges to a single phase fixed point ϕ∗=

(
0°, 120°, 240°

)
. When SKONN has

both odd and even numbers of input synapses, we heuristically find that most of phases tend to binarize as illustrated
with the 5-node graph in Fig. 4b, although some phases (such as ϕ2) can still converge to fixed points with arbitrary
phase values. This aspect will be further discussed when solving larger graphs in section 3.4.

Note that similar dynamics have already been explored in simulation by Wang et. al. in their work about Oscillatory Ising
Machines (OIM) [8]. The authors studied the case where the sinusoidal term sin(∆ϕ) from Kuramoto (6) is replaced by
tanh (α sin∆ϕ) with α = 10. As SKONN’s square interaction can be thought as square(∆ϕ) ≈ − tanh (α sin∆ϕ) for
α >> 1, we expect SKONN to have good performances when solving NP-hard combinatorial optimization problems.

2.3 SKONN energy landscape

SKONN stability can be proved by applying the Convergence Theorem for Oscillatory Neural Networks derived by
Hoppensteadt and Izhikevich [35]. With an odd coupling function (4) and symmetric coupling Qij = Qji, the theorem
ensures that the phase differences converge to a stable fixed point. The proof consists of finding a Lyapunov function for
the dynamics (7) that is bounded below and minimized through time. A candidate for the SKONN Lyapunov function
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1

2

3

Even-degree neurons
D = 2

Figure 5: a) Three oscillators coupled by negative weights. b) and c) Corresponding Kuramoto and SKONN energy
landscapes, respectively. The arrows represent three examples of trajectories with various initializations, highlighting
Kuramoto’s minima and saddle point. In this example, SKONN’s energy minima consist of plateaus that are linked to
the even-degree property (Proposition 2.2).

is:

E =
β0

T

N∑
i,j

Qij triangle
(
ϕi − ϕj

)
(8)

With:

triangle(θ) =
{
θ − π/2, if 0 ≤ θ ≤ π

3π/2− θ, if π ≤ θ ≤ 2π
(9)

Under the assumption that Qij = Qji, one can check that:

∂E

∂ϕk
=

β0

T

(
−

N∑
j=1

Qkj square
(
ϕk − ϕj

)
+

N∑
i=1

Qik square
(
ϕi − ϕk

))
=− dϕk

dt

(10)

Thus, SKONN minimizes E over time:

dE

dt
=

N∑
k=1

∂E

∂ϕk

dϕk

dt

=−
N∑

k=1

(dϕk

dt

)2

≤ 0

(11)

SKONN’s and Kuramoto’s energy landscapes are represented for the three fully-coupled oscillators case in Fig.5.
We observe that SKONN’s energy landscape has two plateaus where the phases can settle and remain stable, which
is consistent with the phase distribution from Fig.4a and linked to the even number of synaptic inputs (Proposition
2.2). Whereas the Kuramoto energy landscape consists of two minima and a saddle point, as highlighted by the three
simulated trajectories of Fig.5b and c. Unfortunately, we cannot visualise the energy landscape for larger networks but
a local analysis around a phase fixed point can reveal the landscape around it (discussed in the supplementary material).
There can be sharp hills in some directions and plateaus in others. For instance in the 5-node case of Fig.4b, most of the
fixed points are surrounded by hills in all directions except for the direction ϕ2 which consists of a trench where E
remains constant.

So far, we have seen that SKONN has simple yet rich phase dynamics with unique phase binarization properties resumed
in Proposition 2. Moreover, SKONN’s phase evolution can be interpreted as the minimization of a N-dimensional
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energy landscape E (8) and thus naturally performs the gradient descent of E through time. One can harness this
concept for solving optimization problems that consist in finding minima of a cost function. In the next sections, we
focus on the NP-hard Max-cut problem and present two approaches for solving Max-cut with SKONN.

2.4 SKONN for solving the NP-hard Max-cut problem

Given a graph with a set V of N vertices connected by weighted edges Wij = Wji, the Max-cut problem consists in
cutting the graph in two complementary subsets of vertices V1 and V2 such that the sum of weights between V1 and V2

is maximum. The Max-cut problem can be formulated as follows [36]:

Max
1

2

∑
i,j

Wij(1− SiSj)

subject to: (12)
Si ∈ {−1,+1} ∀ i ∈ V

Solving the Max-cut problem is NP-hard and the best-known approximation algorithm is the Semidefinite Programming
(SDP) algorithm found by Goemans and Williamson [36] and denoted GW throughout the paper. By relaxing the binary
spins Si to unit vectors vi in RN , GW relaxes the NP-hard Max-cut problem to an SDP convex problem for which
optimality can be found in polynomial time:

Max
1

2

∑
i,j

Wij(1− vi.vj)

subject to: (13)

vi ∈ RN

|vi| = 1 ∀ i ∈ V

To compute the cut, the vectors are finally assigned to binary spins by splitting in two the N-dimensional sphere
with a random hyper plan. Repeating this final rounding step provides a cut at least 0.878 times the maximum cut in
expectation. However, due to the high dimension of the problem relaxation (RN ), GW is costly for large instances
[37, 38] and alternative approaches using physical systems such as Quantum Annealers [39], coherent Ising machines
[38], memristors [40] or coupled oscillators are being investigated [8, 11, 9, 19].

2.4.1 The Ising approach

One of the most studied formalisms applied to ONN is from Ising which was initially derived to study magnetism in
materials [41]. Given interaction coefficients Jij ∈ R between particles that can have two spins Si ∈ {−1;+1}, the
particles relax to a state that minimizes the Ising Hamiltonian (we skip the external fields for simplicity):

H = −1

2

N∑
i,j

JijSiSj (14)

Thanks to Lucas’ seminal work [42], all Karp’s 21 NP-complete problems can be mapped to the Ising formalism and
the solutions can be approximated by any physical machine that minimizes the Ising Hamiltonian (14). If SKONN
phases take binary values ϕi = (1− Si)π/2 ∈ {0, π}, its Lyapunov function (8) becomes:

E =
β0

T

N∑
i,j

Qij triangle(
π

2
(Sj − Si))

=− πβ0

2T

N∑
i,j

QijSiSj

∝ H

(15)

Each synaptic current spike can be thought of as a downward step (due to equation (11)) in the energy landscape (8)
which corresponds to the Ising Hamiltonian (15) if the final phases are binary. However, having binary phases is not
guaranteed in general as we have seen with the Proposition 2.2. To force phase binarization, it is common practice to
inject into the oscillators a SHIL periodic signal at twice the oscillating frequency [8] and described in Appendix D for
SKONN.
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The Max-cut problem can easily be mapped to an Oscillatory Ising Machine (OIM) with spins corresponding to
the graph vertices by setting Jij = −Wij with Wij the graph weights [42]. Then, the OIM performs the following
minimization which is equivalent to the Max-cut (13):

MinH = Max
(
− 1

2

∑
i,j

WijSiSj

)
subject to: (16)
Si ∈ {−1,+1} ∀ i ∈ V

The general strategy is to 1) map the graph to the OIM, 2) start the OIM while ramping up a 2-SHIL signal to binarize
the phases, and 3) read the stable phase state [8]. Forcing phase binarization is common practice as it maps the OIM
Lyapunov function to the Ising Hamiltonian (15). However, how to binarize is not straightforward. If the injected
signal is too strong, it may "freeze" the phases to sub-optimal local minima [8]. Whereas if the signal is too weak, it
might increase the OIM computation time. In this work, we rather harness the free SKONN dynamics without SHIL to
compute the Max-cut.

2.4.2 A Rank-2 relaxation approach

Erementchouk et. al. [43] have recently shown that the free OIM relaxation can be harnessed to solve the Max-cut
problem. Their recent results demonstrate that letting a Kuramoto-ONN settle to analog phase values is equivalent
to solving a rank-2 relaxation problem for the NP-hard Max-cut problem. Such phase dynamics are used in the
CirCut solver [37]. Similarly to GW, the CirCut algorithm relaxes spins Si to 2D unit vectors xi ∈ R2 such that
xi =

(
cos(ϕi) sin(ϕi)

)
that can take arbitrary values on the unit circle. The objective of the rank-2 relaxation is:

Max
1

2

∑
i,j

Wij(1− xi.xj)

= Max
1

2

∑
i,j

Wij(1− cos(ϕi − ϕj))

subject to: (17)

xi ∈ R2

|xi| = 1 ∀ i ∈ V

Then, a rounding procedure produces spins to compute the graph cut. Unfortunately, this rank-2 algorithm cannot
guarantee a lower bound on the cut as it remains a non-convex optimization problem. Nevertheless, its accuracy is
comparable to the GW algorithm in practical use [37]. In this paper, we only explore the relaxation approach where we
let SKONN settle without forcing binarization. We will see that SKONN’s phase binarization property (Proposition 2.1)
is particularly useful in this case. For the Ising approach, we invite the reader to consult the excellent work from Wang
and Roychowdhury [8] as the reported dynamics are equivalent to SKONN’s.

3 Results

3.1 3x3 SKONN PCB

We designed a 3x3 SKONN on PCB with fully-connected capability and 81 synapses (Fig.6a) as a proof of concept
for the SKONN architecture. Due to area constraints, we only implemented negative weights that we program by
placing discrete capacitors Cij manually. Fig.6b shows the oscillating neuron based on a Schmitt trigger (U1) with
feedback resistor R3 that charges/discharges a load capacitor CL, producing a triangular-like waveform with 720
mVpp amplitude. The neuron output is a square-like waveform oscillating between VDD = +0.9V and VSS = −0.9V.
Using an FPGA, we set the initial phase state by delaying the oscillator’s starting time (Q1). The FPGA measures the
neurons’ output voltages and allows phase post-processing with a maximum precision of ϵ = 360◦ f0/fFPGA. In our
experiments we set f0 = 4kHz, fFPGA =50 MHz and ϵ ≈ 0.03◦.

Fig.6c shows an experiment of two oscillators weakly coupled by C12 = C21 = 1%CL whereas Fig.6d is a strong
coupling with C12 = C21 = 10%CL. In both experiments, the oscillators are out-of-phase but the strong coupling case
leads to a frequency reduction of -34% as the voltage jumps ∆V = (VDD − VSS)C12/CL produced by each current
spike are too large with respect to the analog amplitude. This phenomenon can induce frequency mismatches between
groups of strongly coupled oscillators and groups of weakly coupled oscillators. Frequency mismatches still need to be
investigated and here we empirically choose Cij < 5%CL to guarantee phase locking among oscillators.
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Figure 6: (a) SKONN on PCB with 9 oscillators and 81 synapses. We set the weight amplitude with the synaptic
capacitance value Cij . The FPGA initializes the phases by delaying the oscillators’ starting time by switching Q1 and
measures the digital oscillations buffered by the output stage (U2 and Q2). (b) The oscillator consists of a OP-amp
Schmitt trigger fedback by the resistor R3 to produce self-oscillations. R1//R2 sets the analog oscillation amplitude. (c)
Two coupled oscillators with C12/CL = C21/CL = 1%. (d) Two coupled oscillators with C12/CL = C21/CL = 10%.

3.2 Weighted Max-Cut on PCB

The test case consists of the Max-cut problem with 2-bit positive weights. We generate random instances of Erdos-Rényi
graphs G(N, p) [44] with N=9 nodes and p is the probability to have an edge between a pair of vertices such that the
total number of edges m = pN(N − 1)/2. For each graph edge, the weight is randomly selected from the list [0 10 22
47]/47 that corresponds to discrete capacitors used experimentally.

Fig.7a shows an example of a dense random graph instance with p = 0.75. We map the graph edges to the synaptic
matrix and run 100 trials with random phase initializations. For each trial, the nine phases are sampled every oscillation
period during 1000 oscillation cycles. Fig.7b shows the final phases ϕi(t = 1000T ) measured for each trial, the
latter indicated as the amplitude in the polar plot. The right-hand side of the polar plot corresponds to positive spins,
whereas the left-hand side corresponds to negative spins. It appears that some phases such as ϕ2, ϕ4 and ϕ6 are always
assigned to the same spin polarity whereas most of the phases can end up in both half-circles, depending on the phase
initialization. Hence, SKONN final states depend on the initialization and several trials ensure obtaining a good solution.
Fig.7c shows the histogram of solution and the settling time. SKONN finds the graph Max-cut with 75% probability in
less than 100 oscillation cycles on average. Fig.8 presents another Weighted Max-cut problem with G(9, 0.5). Other
Max-cut examples are shown in the supplementary material file.

3.3 4x4 SKONN CMOS design

3.3.1 SKONN Integrated Circuit

To further assess SKONN performances, we taped out an ASIC chip using a 65nm technology. Fig.9a shows the chip
layout view and Table 2 contains the chip specifications. For this first ASIC version, we have focused on transistor
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𝐒𝐢 = −𝟏 𝐒𝐢 = +𝟏
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Max-cut

𝐒𝐢 = −𝟏

Settling time

Figure 7: (a) Random instance of G(9, 0.75) with 2-bit weighted edges. (b) Phases measured after 1000 oscillation
cycles. The polar amplitude represents the trial number (100 trials). We assign −90◦ < ϕi < 90◦ → Si = +1 and
90◦ ≤ ϕi ≤ 270◦ → Si = −1. (c) Histogram of Max-cut solutions for 100 trials and measured settling time. (d)
Example of phase dynamics in polar representation. The polar amplitude corresponds to the time expressed in cycles.
(e) Same dynamics represented in Cartesian plot with the cut evolution.

matching to minimize the variations among oscillators and enhance the robustness. The second main objective was
a low power consumption (160 µW without IOs). Although there are 16x more synapses than neurons, the synapses
represent only 20% of the power consumption and are promising for solving dense networks. The constraint on the
oscillator matching led to a large oscillator area (5000 µm²) but could be overcome with some calibration technique.
Although the total chip area is 3.9 mm², there is room for improvement as the core area is 1.1 mm², and 71% of the total
area consists of routing lines from the core to the high number of IOs and test pads (90).

Similarly to the SKONN design on PCB, the oscillating neuron consists of a hysteresis regenerative comparator
whose digital output drives the charge and discharge of the capacitor CL=500fF in the shaper block (Fig.9d). The
comparator switches whenever the input voltage V in

i reaches one of the two voltage thresholds VH and VL that define
the analog voltage amplitude as ∆V = VH − VL =120 mV and (VH + VL)/2 = VREF =600 mV. The synaptic
block consists of a capacitor bank ranging from 0 to 37.5fF that linearly maps the weight amplitude from 0 to 15
(C0 = C1/2 = C2/4 = C3/8=2.5fF). The weight sign is selected by the multiplexer commanded by the sign bit BS .
The synaptic matrix is programmed by sending serially the 5x256=1280 bits through the registers.

Table 3 presents the specifications of the state-of-the-art ONNs designed using CMOS technology. The connectivity
scheme can be all-to-all for small-sized ONNs (N≤100) but is obviously reduced to nearest neighbor connections for
larger ONNs such as in [11] and [20] that chose to connect 6 and 8 (King’s graph) neighbors, respectively. SKONN’s
input/output separation allows any type of modular connectivity in a robust manner as the synaptic signal from 2-coupled
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(d) (e)

𝐒𝐢 = −𝟏 𝐒𝐢 = +𝟏
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𝐒𝐢 = −𝟏

Max-cut

Figure 8: (a) Random instance of G(9, 0.5) with 2-bit weighted edges. (b) Phases measured after 1000 oscillation
cycles. The polar amplitude represents the trial number (100 trials). We assign −90◦ < ϕi < 90◦ → Si = +1 and
90◦ ≤ ϕi ≤ 270◦ → Si = −1. (c) Histogram of Max-cut solutions for 100 trials and measured settling time. (d)
Example of phase dynamics in polar representation. The polar amplitude corresponds to the time expressed in cycles.
(e) Same dynamics represented in Cartesian plot with the cut evolution.

Table 2: SKONN ASIC specifications

Technology Neurons Synapses Synaptic
precision fosc SHIL inputs Area Power

65nm 16 256 5 bits 1-4 MHz 16

3.9 mm²
Neurons: 2 %
Synapses: 24 %
Biasing: 3 %
Routing, IOs: 71 %

160 µW
Neurons: 75 %
Synapses: 20 %
Biasing: 5 %

oscillators cannot leak to any other oscillator. This contrasts with fully-analog architectures such as [19, 9] that merge
input/output nodes, resulting in undesired current paths between non-adjacent oscillators. It appears that digital ONNs
such as [5] and [11] are very energy-efficient as they produce a single oscillation with only 300 fJ. In contrast, analog
oscillators found in [20] and this work consume 2.3 pJ and 10 pJ per oscillation, respectively. However, we believe that
SKONN’s energy could be reduced by relaxing the constraints on the analog oscillator matching and using a calibration
scheme instead, as proposed by Graber et. al. [20].

3.3.2 Feed-Forward Network with SKONN

Propagating the information in a feed-forward manner is useful in some applications that require driving neurons.
For instance, when training an ONN with the Equilibrium Propagation method [45, 46], one must nudge the output
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Figure 9: a) Layout view of the taped out SKONN ASIC. There are 16 neurons and 256 synapses laid out as in Fig.1. b)
SKONN synapse with 5 bits precision. The four parallel capacitors set the the weight amplitude from 0 to 15. The
bit BS selects the weight sign from the multiplexer. c) Shaper circuit producing the input triangular oscillation. d)
Regenerative comparator that holds the neuron state and commands the shaper stage. An hysteresis behavior is obtained
by setting the feedback transistors Q7 and Q8 such that WQ7/WQ6 = WQ8/WQ9 > 1 for the same transistor length.

Table 3: Comparison between state-of-the-art ONN Integrated Circuits

Jackson et. al. [5] Ahmed et. al. [11] Bashar et. al. [19] Graber et. al. [20] This work

Technology 28nm 65nm 65nm 28nm 65nm
Neurons 100 560 30 400 16

Connectivity all-to-all hexagonal all-to-all King’s graph all-to-all
Power 303 mW 23 mW 1.76 mW 182 mW 160 µW

Frequency 1 GHz 118 MHz 45 kHz 200 MHz 1 MHz
Energy/osc 0.30 pJ 0.35 pJ 1.3 nJ 2.3 pJ 10 pJ
Chip area 3.24 mm² 1.44 mm² - 2.2 mm² 3.9 mm²
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Figure 10: a) XOR(X,Y) circuit using SKONN and feed-forward synapses. Neuron Z is the reference oscillator and can
be thought of as the neurons’ bias, similar to perceptrons. The weights WXZ and WY Z are the inputs and set the initial
phases ϕX and ϕY . b) Example of dynamics when WXZ = WXZ = −1 which set ϕX = ϕY = 180◦ and corresponds
to the boolean case where X=Y=1. c) Zoom on the steady-state solution.
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Table 4: Solving XOR(X,Y) with SKONN

WXZ WY Z ϕX ϕY ϕXOR

+1 +1 6° 341° 33°
+1 -1 340° 185° 185°
-1 +1 185° 340° 185°
-1 -1 160° 185° 33°

oscillators toward the desired value which is challenging to obtain with recurrent synapses. Instead, teaching oscillators
could drive the output oscillators using feed-forward connections without being impacted during the learning phase.

To demonstrate the SKONN feed-forward ability, we run ASIC transient simulations of a simple 2-input XOR operation.
Inspired by the Parametron built by Goto in the 1950s [3], we use a 3-input SKONN neuron as a majority gate

ϕM = (ϕX .ϕY ) + (ϕX .ϕZ) + (ϕY .ϕZ) (18)

Where ϕX , ϕY , ϕZ ∈ {0; 180} are the input binary phases thought as Boolean variables; i.e. ϕM is true when ϕM=180°.
Interestingly, SKONN’s odd-degree property (Proposition 2.1) ensures that ϕM is binary when its inputs are also binary.

The XOR(X,Y) circuit is implemented by writing the XOR boolean expression ϕXOR = (ϕX .ϕY ) + (ϕY .ϕX).
Considering ϕZ as the reference oscillator, AND and OR gates are obtained when feeding ϕZ or ϕZ to the majority
gates, respectively. Fig.10a shows the obtained network with two hidden neurons (H1,H2), one neuron acting as a bias
unit (Z), and one output neuron. The two input neurons X and Y are recurrently connected to the reference oscillator Z to
set the input phase ϕX and ϕY . When the weight WXZ is -1 or +1, it sets ϕX ≈ 0◦ or ϕX ≈ 180◦, respectively, and the
same rule applies for ϕY and WY Z . All the oscillators are arbitrarily turned on at the same time before the input phases
ϕX and ϕY settle to the desired inputs. Then, the network further relaxes to a stable phase state after a few oscillations
and we read the output phase ϕXOR. Fig.10b and c show the simulation results in the case ϕXOR(180

◦, 180◦) = 0◦.
Table 4 summarizes the results for the 4 possible inputs WXZ and WY Z . By assigning the bit 0 when 270°≤ ϕi ≤90°
and 1 otherwise, it can be seen that the proposed network computes XOR(X,Y) in a feed-forward manner.

3.4 SKONN scaling and benchmarking

3.4.1 Weighted Max-cut of random graphs

To assess how SKONN’s computational performances scale, we run large-scale simulations of random Weighted
Max-cut problems for N=8, 16, 32, 64, 128, 256, 512, and 1024 nodes. For each graph density d=0.25, 0.5, and 0.75,
10 random graphs G(N, d) are generated such that the total number of edges m = d N(N − 1)/2. The graph edges
are randomly weighted with positive values from 0 to 15 that correspond to the ASIC synaptic range. We use the
ASIC parameters and solve SKONN’s dynamics (7) with MATLAB using the built-in ODE solver ode15s. For each
graph instance, we run 10 trials with random phase initialization, for a total of 100 trials per graph size and density.
As a ground truth, we consider the best solution CutGW provided by the Goemans-Williamson algorithm, out of 100
random projections defining the cut [36] and computed with the CVX solver on MATLAB [47]. The distance between
the SDP cut CutSDP and CutGW is represented in Fig.11a. As CutSDP ≥Max-cut, the ratio CutGW /CutSDP gives
a lower bound on the chosen GW cut. For all the trials, the results are compared with Kuramoto dynamics with the
same parameters and initializations.

Fig.11b shows SKONN’s and Kuramoto’s phase distributions for each ONN size. Here again, it appears that SKONN
phases tend to be clustered near 0° and 180° whereas Kuramoto phases seem more uniformly distributed. Fig.11c
present the obtained cuts when considering the first oscillator as the reference, and normalized by CutGW . We first
notice that the results are quite homogeneous with respect to the graph densities. Secondly, it appears that SKONN
produces high-quality cuts as Cut/CutGW ≈ 1 for all ONN sizes. In contrast, Kuramoto-ONNs have a lower accuracy
for sizes between N=16 and N=256. Interestingly, the settling time (time to reach a steady phase state) seems to grow
according to a logarithmic law with the ONN size. This result refines some previous scaling observations mentioning a
quasi-constant settling time [16, 8]. It also confirms the high ONN parallelism and ability to compute in a few tens of
cycles, even for large graphs.

Similarly to the CirCut algorithm [37] (rank-2 relaxation approach), we also investigate the Kuramoto accuracy when
changing the reference oscillator and name it the "Kuramoto-CirCut" scheme. Fig.11d presents the case where the best
Kuramoto cut is chosen out of N possible cuts, whereas the SKONN reference oscillator remains the first one. It can
be seen that SKONN provides the same quality cut as GW and Kuramoto-CirCut. However, compared to GW and
Kuramoto-CirCut, SKONN’s cut is solely obtained by reading out the phases with respect to a single oscillator and
does not need N different cut evaluations that linearly increase the time to solution.
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Figure 11: a) Ratio between CutGW and CutSDP that gives a lower bound on CutGW as CutSDP ≥Max-cut. b)
Phase distribution at steady state for SKONN (left) and Kuramoto (right) for various ONN sizes. c) Cuts obtained by
SKONN and Kuramoto when the first oscillator is the phase reference and for various graph densities. d) Cut obtained
when SKONN’s reference is the first oscillator, compared to the case where the Kuramoto reference is changed N times,
similarly to the CirCut algorithm [37].
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Table 5: Comparison Between CirCut, Kuramoto, and SKONN solvers for G-SET Max-cut instances. The bold values
indicate the best cut obtained among the four approaches. The number in parenthesis is the cut normalized by the
best-known cut found in [48].

Graph Value Settling time
(cycles)

Name |(V |, |E|) Weights Type GW Kuramoto-CirCut Kuramoto SKONN Best-known [48] Kuramoto SKONN
G11 (800, 1600) -1,+1 toroidal 530 (0.940) 514 (0.911) 502 (0.890) 540 (0.957) 564 480 368
G12 (800, 1600) -1,+1 toroidal 532 (0.957) 510 (0.917) 496 (0.892) 528 (0.950) 556 216 272
G13 (800, 1600) -1,+1 toroidal 554 (0.952) 538 (0.924) 524 (0.900) 544 (0.935) 582 368 224
G14 (800, 4694) +1 planar 2978 (0.972) 3005 (0.981) 2974 (0.970) 3020 (0.986) 3064 416 496
G15 (800, 4661) +1 planar 2963 (0.971) 2992 (0.981) 2970 (0.974) 2979 (0.977) 3050 704 240
G20 (800, 4672) -1,+1 planar 849 (0.902) 871 (0.926) 818 (0.869) 858 (0.912) 941 504 208
G21 (800, 4667) -1,+1 planar 849 (0.911) 868 (0.932) 839 (0.901) 852 (0.915) 931 184 104
G22 (2000, 19990) +1 random 12936 (0.968) 13095 (0.980) 13026 (0.975) 12988 (0.972) 13359 280 104
G23 (2000, 19990) +1 random 12946 (0.970) 13106 (0.982) 13078 (0.980) 12950 (0.970) 13344 864 216
G24 (2000, 19990) +1 random 12966 (0.972) 13135 (0.985) 13050 (0.978) 12997 (0.974) 13337 928 160
G30 (2000, 19990) -1,+1 random 3014 (0.883) 3200 (0.938) 3175 (0.930) 3095 (0.907) 3413 376 192
G31 (2000, 19990) -1,+1 random 2885 (0.872) 3089 (0.933) 3063 (0.925) 3015 (0.911) 3310 1424 456
G32 (2000, 4000) -1,+1 toroidal 1290 (0.915) 1284 (0.911) 1280 (0.908) 1332 (0.944) 1410 616 520
G33 (2000, 4000) -1,+1 toroidal 1266 (0.916) 1254 (0.907) 1244 (0.900) 1294 (0.936) 1382 424 248
G34 (2000, 4000) -1,+1 toroidal 1274 (0.920) 1258 (0.909) 1224 (0.884) 1306 (0.943) 1384 704 456
G50 (3000, 6000) -1,+1 toroidal 5880 (1.00) 5784 (0.983) 5764 (0.980) 5818 (0.989) 5880 544 1968
G56 (5000, 12498) -1,+1 random 3634 (0.904) 3700 (0.921) 3622 (0.901) 3733 (0.929) 4017 712 296
G57 (5000, 10000) -1,+1 toroidal 3320 (0.950) 3138 (0.898) 3054 (0.874) 3270 (0.936) 3494 792 576
G60 (7000, 17148) +1 random 13610 (0.959) 13730 (0.968) 13669 (0.963) 13717 (0.967) 14188 824 384
G61 (7000, 17148) -1,+1 random 5252 (0.906) 5322 (0.918) 5257 (0.907) 5327 (0.919) 5796 1648 312
G62 (7000, 14000) -1,+1 toroidal 4612 (0.947) 4394 (0.902) 4358 (0.895) 4642 (0.953) 4870 520 1328
G64 (7000, 41459) -1,+1 planar 7624 (0.871) 8046 (0.919) 7946 (0.908) 8135 (0.930) 8751 800 352

Average 0.934 0.938 0.923 0.946 1 623 431

3.4.2 G-set benchmark

The previous study concerned random graphs. Here, we benchmark SKONN for solving Max-cut using the G-set
benchmark that includes various graph topologies [48]. Table 5 shows the cuts obtained for a single trial with SKONN
and Kuramoto using the same random phase initialization, and considering the first oscillator as the phase reference.
The cuts are compared against the state-of-the-art GW [36] and the Kuramoto-CirCut scheme [37]. GW’s cut is the
best cut obtained out of 100 random projections and computed with the CVX solver on MATLAB [47]. For graphs
with N > 3000, GW values are taken from another state-of-the-art SDP solver [49] due to memory constraints. The
Kuramoto-CirCut values correspond to the best cut extracted from the Kuramoto dynamics, out of N possible reference
oscillators.

With a single run, Kuramoto-CirCut and SKONN solvers produce, on average, better results than the GW algorithm
which picks up the best spin configuration out of 100 random projections. The average SKONN cut value is 94.6%
of the best-known cuts [48] and the highest among the four methods. The accuracy obtained by simulating SKONN
motivates its real hardware implementation as the time-to-solution could be drastically reduced compared to a CPU. For
instance, solving the smallest graph G11 requires 12 s of GW runtime on a laptop (i7 Intel core @1.6 GHz and 32 GB
of RAM). In contrast, SKONN’s settling time does not vary much with the ONN size and could enable a large-scale
cut computation in less than 431 cycles on average. With oscillators running at 1 MHz, the runtime per trial would
only be 431 µs which is 2.8 104x faster than GW’s execution. However, reaching excellent cuts such as 99.9% of the
best-known cut requires more trials and annealing the ONN to escape local minima. For more results using SHIL and
various annealing schemes, please refer to [8].

4 Discussion

SKONN mixed-signal architecture facilitates scaling up the ONN size thanks to the separation between analog compu-
tation and digital propagation. While the neurons exchange information in the digital domain, SKONN architecture
ensures that the sensitive analog computation remains within modules and can be shielded from the outside. However,
it remains some design challenges that are currently being investigated:

1. Any delay added to the digital propagation is equivalent to a synaptic phase shift. This must be considered
for a high-frequency operation when buffers’ delays become non-negligible and can be an issue for advanced
technologies.
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2. Large synaptic values can induce large voltage jumps at the analog input that can decrease the frequency for
recurrent synapses, as highlighted in Fig.6d. Without compensation, this strong coupling scenario could lead
to multiple oscillation frequencies and prevent global phase-locking.

5 Conclusion

This article introduced SKONN, a novel mixed-signal ONN architecture that enables large-scale analog computations
in phase domain. We presented how the association of simple circuitry can enable robust analog phase computation;
while propagating the information in the digital domain to facilitate the implementation of large networks. We first
reported experiments on a 9-neuron SKONN on PCB that finds the maximum cut of weighted graphs with high accuracy.
Then, we presented the design of a CMOS 16-neuron integrated circuit (IC), highlighting SKONN programmability,
modularity, and benchmarking with state-of-the-art ONN ICs. Furthermore, our design choice led to interesting phase
dynamics that are a saturated version of the Kuramoto model and have unique properties. Such as, we found that
such dynamics tend to binarize phases and are very efficient to solve NP-hard problems based on binary variables like
Max-Cut. It appeared that SKONN’s accuracy on random graphs is as good as the state-of-the-art Goemans-Williamson
(GW) and CirCut algorithms, and even higher when benchmarked with graphs with up to 7000 nodes from the G-set.
Our study revealed that SKONN’s computation time grows logarithmically with the network size which is promising
for solving large-scale problems. For example, SKONN neurons oscillating at 1 MHz would provide a graph cut four
orders of magnitude faster than the GW algorithm run on a CPU.
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Figure 12: Voltage dynamics of a single neuron obtained by solving numerically (19). In this example, CL=500fF,
Ibias=200nA, VL=0.5V, VH=0.7V, VDD=1.2V, γ=100 and τH=1ns.

A SKONN voltage and current dynamics

A.1 Neuron voltage dynamics

By denoting Iij the input synaptic currents, the voltage dynamics of neuron i can be modeled as follows:CL
dV in

i

dt = Ibias sign
(
VDD/2− V out

i

)
+
∑

j Iij

τH
dV out

i

dt = VDD fH

(
V in
i , V out

i , VL, VH

)
− V out

i

(19)

Where CL is the input capacitance, Ibias the current that charges and discharges CL, VDD is the amplitude of V out
i , VL

and VH are the lower and upper thresholds of the hysteresis block, and τH is the time constant linked to the output
load of the hysteresis block. The term fH expresses the output switching with hysteresis behavior. As in [50], one can
model the hysteresis behavior using a tanh function with slope γ:

fH = 0.5
(
1 + tanh

(
γ
(
V in
i − VH − VL − VH

VDD
V out
i

))
(20)

When fH=0, V out
i =0 and CL charges. When fH = 1, V out

i =VDD and CL discharges. The two switching occur when
V in
i =VL and V in

i =VH , respectively. Fig.12 shows an example of numerical solution for the equations (19).

A.2 Synaptic currents

In SKONN, the digital output voltage V out
j goes through the synaptic capacitance Cij that creates current spikes holding

the phase information ϕj . The synaptic spike train can be expressed as follows:

Iij = Cij

(dV out
j

dt
− dV in

i

dt

)
(21)

A.3 Voltage dynamics of coupled neurons

By injecting the synaptic current expression in equation (19), we obtain:
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π

Figure 13: SKONN Phase Perturbation Vector (PPV). The injection of a charge dQ induces a time shift ±dt, which in
turn creates a phase shift dϕ = 2π dt/T . The phase shift sign changes when there is a change in V in

i ’s slope.

Ceq
dV in

i

dt = Ibias sign
(
V out
i − VDD/2

)
+
∑

j Cij
dV out

j

dt

τH
dV out

i

dt = VDD fH

(
V in
i , V out

i , VL, VH

)
− V out

i

(22)

With Ceq the equivalent capacitance:

Ceq = CL +
∑
j

Cij (23)

(23) indicates that the synaptic capacitances are added to the oscillator load and slow down the charge and discharge of
the input node. Large synaptic capacitances could potentially induce heterogeneous frequencies within SKONN and
still needs to be explored.

B SKONN Phase Perturbation Vector

The PPV is a T-periodic function v⃗(t) that quantifies the phase shift of an oscillator subject to a perturbation occurring
at time t [32]. One way of computing v⃗(t) is to inject a pulsed perturbation to the oscillator at time t, measure the
induced phase shift and normalize by the perturbation’s strength [9]. In SKONN, the synaptic current Iij perturbs
the triangular oscillation V in

i and the scalar PPV v(t) can be derived by computing the phase shift dϕ when injecting
current pulses I(t′) = dQδ(t′ − t) with t ∈ [0;T [. From Fig.13, we distinguish three cases:

1. 0 < t < T/2: the perturbed oscillation is shifted toward the left by the same amount of time −dt.

2. T/2 < t < T : the perturbed oscillation is shifted toward the right by the same amount of time +dt.

3. t ∈ {0;T/2}: the time shift is undefined as V in
i ’s slope is undefined (not derivable).

Injecting dQ to CL induces a voltage jump dV = dQ/CL. This results in a time delay −dt and +dt when CL

charges and discharges, respectively, with |dt| = CLdV/Ibias. The amount of phase shift can then be expressed as
dϕ = 2π dt/T . The oscillation period T is expressed by T = 2CL∆V/Ibias, with ∆V = VH − VL. Finally, merging
the equations leads to

dϕ

dQ
= ± π

CL∆V
= ±β0 (24)
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Which is the phase shift caused by the injection of 1 coulomb. The phase shift sign depends on whether the charge is
injected during the charge or discharge of the triangular waveform. Considering the three previous cases and changing
the time variable t to phase θ, we express SKONN’s PPV as follows:

v(θ) = β0 square(θ) (25)

Where:

square(θ) =
{−1, if 0 < θ < π

+1, if π < θ < 2π
(26)

C SKONN phase dynamics

C.1 Two coupled oscillators

The phase dynamics of a single oscillator of frequency ω0 = 2π/T are:

d

dt
ϕ(t) = ω0 (27)

When the oscillator receives a pre-synaptic signal b⃗(t), it undergoes a time shift α(t) associated with the perturbation
b⃗(t). If the variation of the oscillating amplitude remains small [32], α(t) dynamics can be expressed as follows:

d

dt
α(t) = v⃗(t+ α(t)).⃗b(t) (28)

Where v⃗(t) is the T-periodic Phase Perturbation Vector (PPV) associated with the oscillator; and describes the phase
sensitivity of the oscillator under injections at different nodes. In our case, we consider scalars b(t) and v(t) as the
pre-synaptic signal b(t) is injected to a unique input node. As b(t) also oscillates at frequency ω0 and with phase
ϕb(t) = ω0t, we introduce ∆ϕ(t) = ϕ(t) − ϕb(t) = ω0α(t) that expresses the phase difference between post and
presynaptic signals. The latter can be considered as the reference as it is driving the oscillator. To simplify equations,
we define the 2π-periodic PPV and perturbation as v2π(ω0t) = v(t) and b2π(ω0t) = b(t), respectively. The phase
dynamics become:

d

dt
∆ϕ = ω0 v

2π
(
ϕb +∆ϕ

)
b2π

(
ϕb

)
(29)

We assume that under weak coupling, the phase difference ∆ϕ evolves slowly compared to the presynaptic phase ϕb

and it is common practice to average out ∆ϕ over one period:

1

2π

∫ π

−π

d

dt
∆ϕdϕb ≈

d

dt
∆ϕ

=
1

T

∫ π

−π

v2π
(
ϕb +∆ϕ

)
b2π

(
ϕb

)
dϕb

(30)

We saw previously that a pre-synaptic signal consists of current pulses that are aligned with the rising and falling edges
of the digital pre-synaptic voltage. Then, we consider the case where b2π(θ) consists of a train of Dirac pulses:

b2π(θ) =

∞∑
n=0

p(θ − n2π) (31)

With:
p(θ) = Q

(
δ(θ)− δ(θ − π)

)
(32)

Under this assumption, (30) becomes:

d

dt
∆ϕ =

Q

T

(
v2π(∆ϕ)− v2π(∆ϕ+ π)

)
(33)

In SKONN, the analog input oscillation is a symetric triangular waveform that has a simple 2π-periodic PPV expressed
as follows:

v2π(θ) = β0 square(θ) (34)
Where:

square(θ) =
{−1, if 0 < θ < π

+1, if π < θ < 2π
(35)
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And β0 is the phase shift induced by the injection of 1 coulomb to the oscillating node. Finally, we express the phase
dynamics of the driven oscillator:

d

dt
∆ϕ = 2β0

Q

T
square(∆ϕ) (36)

We notice that the average of the phase dynamics are very similar to the Kuramoto model except that its sinusoidal
interaction term is replaced by a saturated square function in our case.
Proposition 1. If the injected charge Q ̸= 0 then the two SKONN oscillators admit a unique stable fixed-point
∆ϕ∗ = (ϕi − ϕj)

∗ such that:

∆ϕ∗ =

{
0, if Q > 0

π, if Q < 0
(37)

Proof. The proof consists in finding a Lyapunov function for the dynamics (36). Consider the bounded continuous
Lyapunov function:

E = 2β0
Q

T
triangle(∆ϕ) (38)

With:

triangle(θ) =
{
θ − π/2, if 0 ≤ θ ≤ π

3π/2− θ, if π ≤ θ ≤ 2π
(39)

We have :
∂E

∂∆ϕ
= −2β0

Q

T
square(∆ϕ) = −d∆ϕ

dt
(40)

E is minimized through time as follows:

dE

dt
=

∂E

∂∆ϕ

d∆ϕ

dt
= −

(d∆ϕ

dt

)2

≤ 0 (41)

1. If Q > 0, the minima of E are ∆ϕ∗ = 0 [2π] and correspond to the phase fixed points of the dynamics (36).

2. If Q < 0, the minima of E are ∆ϕ∗ = π [2π] and correspond to the phase fixed points of the dynamics (36).

In other words, propagating a spike train that consists of positive and negative current spikes spaced in time by T/2
induce an in-phase or out-of-phase locking, depending on the polarity of Q. The latter can be set by choosing one of the
two complementary digital post synaptic voltages as shown in Fig 3.

C.2 N coupled oscillators

When an oscillator i is perturbed by N other oscillators with same pulsation ω0, (28) can be generalized in the scalar
case:

d

dt
αi =

N∑
j=1

v2πij
(
ϕi

)
b2πj

(
ϕj

)
(42)

Similarly to the two-oscillators case, averaging out the previous equation along the fast variable ϕj leads to:

d

dt
αi =

N∑
j=1

1

2π

∫ π

−π

v2πij
(
∆ϕij + ϕj

)
b2πj

(
ϕj

)
dϕj (43)

We use the spike train expression (31) to obtain:

d

dt
αi =

1

2π

N∑
j=1

(
v2πij

(
∆ϕij

)
− v2πij

(
∆ϕij + π

))
(44)

As we inject pre-synaptic signals to the same node, we have v2πij = v2π and we use the SKONN oscillator PPV v2π (34)
to finally get:

d

dt
ϕi =

2β0

T

N∑
j=1

Qij square
(
ϕi − ϕj

)
(45)
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Note that we omitted the term ω0 in the right-hand side of (45) as in practice we refer to the relative phase relationship
between oscillators instead of the absolute values that linearly increase with ω0t.

Considering SKONN’s hardware implementation, we saw that β0 is equal to:

β0 =
π

∆V CL
(46)

And:
Qij = VDDCij (47)

Where ∆V is the peak-to-peak triangular amplitude at the input, CL is the neuron input capacitance, VDD is the digital
voltage swing, and Cij is the synaptic capacitance value. SKONN’s phase dynamics become:

d

dt
ϕi = ω0

VDD

∆V

N∑
j=1

Cij

CL
square

(
ϕi − ϕj

)
(48)

SKONN has an interesting phase binarization property resumed in the following proposition:

Proposition 2. Consider a neuron i of degree D, i.e. driven by D neurons j with weighted charges Qij ∈ {−q,+q}
q ̸= 0.

1. If D is odd and dϕi/dt = 0, then there is at least one input neuron j such that (ϕi − ϕj) is a multiple of π.

2. If D is even, then there is at least one ϕi and one set of input phase ϕj such that dϕi/dt = 0 and ∀j (ϕi − ϕj)
is not a multiple of π.

Proof. 1. By assuming the opposite, i.e. that ∀ j (ϕi − ϕj) ̸= 0 [π], it leads to ∀ j square(ϕi − ϕj) = ±1, using
(4). Noticing that D = m+ l with m ̸= l, and writing SKONN’s phase dynamics (7) leads to:

dϕi

dt
= 0 =⇒

D∑
j=1

±1 =

m∑
j=1

1−
l∑

j=1

1 = 0 (49)

Which is not possible as m ̸= l and proves the proposition.

2. Consider the integers m and l such that there are m weights Qij = +q and l weights Qij = −q, with
D = m+ l = 2k. We can choose:

(a) ϕj=0 for the l (resp. m) input neurons.
(b) ϕj = π for k − l (resp. k −m) other input neurons.
(c) ϕj=0 for the remaining k input neurons.

From SKONN’s phase dynamics (7) we obtain:

T

2β0

dϕi

dt
=− q

∑
j≤l

square(ϕi)

+ q
∑

l<j≤k

square(ϕi − π)

+ q
∑

k<j≤2k

square(ϕi)

Assuming that ϕi ̸= 0 [π], it follows from (4):

T

2β0

dϕi

dt
= −ql(±1)− q(k − l)(±1) + kq(±1)

= 0
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D Sub Harmonic Injection Locking in SKONN

To binarize the phases, one can inject a signal at twice the oscillating frequency VSHIL(t) = A sin(4πω0t) to an
oscillator’s node for which its scalar PPV contains a second-order harmonic P2 ̸= 0 in its Fourier decomposition [31].
In SKONN, we cannot inject the 2-SHIL signal to the input oscillating node V in

i (t) as the associated scalar PPV only
contains odd harmonics (square (25)). In practice, we inject the 2-SHIL signal to a biasing node that allows SKONN
binary phase locking. In this case, the SKONN Lyapunov function becomes

E =
β0

T

N∑
i,j

Qij triangle
(
ϕi − ϕj

)
+

N∑
i

Ai P2 cos(2ϕi)

(50)

When SHIL amplitudes Ai are large enough, phases are binarized ϕi = (1 − Si)π/2 ∈ {0, π} and the SKONN
Lyapunov function corresponds to the Ising Hamiltonian H with an additional offset:

E = −πβ0

2T

N∑
i,j

QijSiSj +

N∑
i

Ai P2

= H + constant

(51)

E Impact of SKONN’s limited bandwidth

When SKONN is implemented in hardware, we observe some phase deviation with respect to the theoretical phase
fixed points, as shown in Fig.14. The main reason is the hysteresis block that does not switch instantaneously when the
synaptic current spikes induce voltage jumps above or below the hysteresis thresholds VH and VL. To better understand
this phenomenon, we ran two transistor-level simulations of two coupled neurons in feed-forward mode with a strong
weight W21=+15 and different frequencies (Fig.14). When the oscillation frequency is low (300 kHz), the hysteresis
switching delay is negligible and there is only a small phase deviation δϕ=4◦. However, when the oscillation frequency
increases to 1.2 MHz, the limited bandwidth of the hysteresis circuit causes a switching delay and a larger phase
deviation δϕ=13◦.

For a given phase precision required by the application, this error could be mitigated by increasing the bandwidth
of the hysteresis circuit or slowing down the oscillators, and constitute a trade-off with the energy consumption [16].
Interestingly, we have observed in experiments that having recurrent synapses Wij = Wji compensate the hysteresis
delay induced in both neurons and the theoretical phase fixed point is reached in that case (see Fig.6c and d).
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fosc = 1.2 MHz

fosc = 300 kHz

𝜹𝝓 = 𝟒°

𝜹𝝓 = 𝟏𝟑°

sign(W21)

C21

M
U

X

IN OUT

V1
out(t) V2

in(t) V2
out(t)

CLI21(t)

(a)

IN OUT

CL

Neuron 1 Neuron 2V1
in(t)

Limited bandwidth

(b)

(c)

Figure 14: a) Two coupled oscillator in feed-forward mode with +C21=7.5%CL which implements W21=+15 in the
ASIC. b) Transistor-level simulation with CL=2pF to decrease the frequency to fosc=300 kHz. c) Transistor level
simulation in nominal case where CL=500fF and fosc=1.2 MHz.
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