HandGest: hierarchical sensing for robust-in-the-Air handwriting recognition with commodity wifi devices
Résumé
Recent advances in wireless sensing techniques have made it possible to recognize hand gestures using channel state information (CSI) in commodity WiFi devices. Existing WiFibased gesture recognition systems mainly use learning-based pattern recognition methods to recognize different gestures, however, these methods fail to work well when the locations of transceivers, the relative location and orientation of the hand with respect to transceivers, and/or the hand gesturing size change, leading to inconsistent signal patterns caused by those factors. Although some recent efforts have been made to address the so-called "domain-dependent" gesture recognition problem, they either require prior knowledge on initial locations of the hand and WiFi devices or need to train several classifiers for the specific domains. Different from the state-of-the-art methods, we construct two distinct features from a hand-oriented view (rather than from a transceiver's view), namely, the dynamic phase vector (DPV) and motion rotation variable (MRV), which are quite consistent in characterizing a big set of handwriting gestures, despite significant change in locations of transceivers, the relative location and orientation of the hand with respect to transceivers, and the drawing sizes. We further incorporate a hierarchical sensing framework and develop HandGest-a real-time handwriting gesture recognition system using commodity WiFi devices, to precisely recognize a great number of "in-the-air" handwritings based on the aforementioned two Manuscript