Reproducibility in machine learning for medical imaging - Archive ouverte HAL
Chapitre D'ouvrage Année : 2023

Reproducibility in machine learning for medical imaging

Résumé

Reproducibility is a cornerstone of science, as the replication of findings is the process through which they become knowledge. It is widely considered that many fields of science are undergoing a reproducibility crisis. This has led to the publications of various guidelines in order to improve research reproducibility. This didactic chapter intends at being an introduction to reproducibility for researchers in the field of machine learning for medical imaging. We first distinguish between different types of reproducibility. For each of them, we aim at defining it, at describing the requirements to achieve it and at discussing its utility. The chapter ends with a discussion on the benefits of reproducibility and with a plea for a non-dogmatic approach to this concept and its implementation in research practice.
Fichier principal
Vignette du fichier
Chapter 21 - Final.pdf (352.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03957240 , version 1 (26-01-2023)
hal-03957240 , version 2 (20-04-2023)

Licence

Identifiants

  • HAL Id : hal-03957240 , version 2

Citer

Olivier Colliot, Elina Thibeau-Sutre, Ninon Burgos. Reproducibility in machine learning for medical imaging. Olivier Colliot. Machine Learning for Brain Disorders, Springer, 2023. ⟨hal-03957240v2⟩
222 Consultations
121 Téléchargements

Partager

More