Deep learning: basics and convolutional neural networks (CNN) - Archive ouverte HAL
Chapitre D'ouvrage Année : 2023

Deep learning: basics and convolutional neural networks (CNN)

Résumé

Deep learning belongs to the broader family of machine learning methods and currently provides state-of-the-art performance in a variety of fields, including medical applications. Deep learning architectures can be categorized into different groups depending on their components. However, most of them share similar modules and mathematical formulations. In this chapter, the basic concepts of deep learning will be presented to provide a better understanding of these powerful and broadly used algorithms. The analysis is structured around the main components of deep learning architectures, focusing on convolutional neural networks and autoencoders.
Fichier principal
Vignette du fichier
Chapter03.pdf (1.56 Mo) Télécharger le fichier
Chapter 3 - Final.zip (7.46 Mo) Télécharger le fichier
Origine Publication financée par une institution
Licence
Licence

Dates et versions

hal-03957224 , version 1 (26-01-2023)
hal-03957224 , version 2 (03-10-2023)

Licence

Identifiants

Citer

Maria Vakalopoulou, Stergios Christodoulidis, Ninon Burgos, Olivier Colliot, Vincent Lepetit. Deep learning: basics and convolutional neural networks (CNN). Olivier Colliot. Machine Learning for Brain Disorders, Springer, 2023, ⟨10.1007/978-1-0716-3195-9_3⟩. ⟨hal-03957224v2⟩
405 Consultations
4214 Téléchargements

Altmetric

Partager

More