Synergistic Multi-Energy CT Reconstruction with a Deep Penalty “Connecting the Energies” - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Synergistic Multi-Energy CT Reconstruction with a Deep Penalty “Connecting the Energies”

Résumé

We propose a novel penalty term for multi-channel synergistic image reconstruction with an application to multi-energy computed tomography (CT). The penalty utilizes trained convolutional neural networks (CNNs) to connect the energies to a latent image. We show on simulated data that our method has the potential to outperform reconstruction with a joint total variation (JTV) penalty.
Fichier principal
Vignette du fichier
ZWang_IEEEMIC_2022.pdf (1.41 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03955092 , version 1 (21-03-2023)

Identifiants

  • HAL Id : hal-03955092 , version 1

Citer

Zhihan Wang, Alexandre Bousse, Noel Jeffrey Pinton, Jacques Froment, Franck Vermet, et al.. Synergistic Multi-Energy CT Reconstruction with a Deep Penalty “Connecting the Energies”. 2022 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector (RTSD) Conference, IEEE, Nov 2022, Milan, Italy. ⟨hal-03955092⟩
114 Consultations
50 Téléchargements

Partager

More