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Abstract—We propose a novel penalty term for multi-channel synergistic
image reconstruction with an application to multi-energy computed
tomography (CT). The penalty utilizes trained convolutional neural
networks (CNNs) to connect the energies to a latent image. We show
on simulated data that our method has the potential to outperform
reconstruction with a joint total variation (JTV) penalty.

I. INTRODUCTION

MULTI-energy computed tomography (CT) consists of acquiring
multi-energetic data, e.g., using dual energy acquisitions or

photon-counting CT systems, to reconstruct multiple attenuation
images at different energies. These images can be subsequently used to
determine material composition. The images are traditionally obtained
by model-based iterative reconstruction (MBIR) techniques, i.e., by
iteratively minimizing a cost function consisting of the sum of a data
fidelity term and a penalty that controls the noise while preserving
basic image properties [1].

Alternatively, the images from multi-energy data can be simul-
taneously reconstructed using synergistic techniques in order to
combine the information from all available energy channels. This can
be achieved using handcrafted multi-channel penalties such as for
example joint total variation (JTV) [2], or structural similarities [3].
These methods may be inappropriate when some features are visible
in one channel but not in another (e.g. contrast agent, tumors).

Alternatively, the inter-channel information can be learned with
patch-based multi-channel dictionaries, for example as proposed in
[4]. However, training such dictionaries is computationally expensive,
especially when the number of channels is high (e.g., multi-energy
CT). Besides, this approach leads to spatially redundant atoms that
are essentially shifts of a basic atom type to “enforce” the spatial-
invariance of the representation, which is not memory-efficient.

In this work we present a novel synergistic multi-energy CT
techniques that uses convolutional neural networks (CNNs) to “connect
the energies”. The CNNs are trained to map the attenuation image at
a reference energy to other energies. This approach is a generalization
of multi-channel dictionary learning. We compared our method to
joint reconstruction with a JTV penalty.

II. METHOD

We consider a simplified multi-energy CT setting with K monochro-
matic X-ray sources of energies E1, . . . , EK . The aim is to reconstruct
K linear attenuation images µk = [µ1,k, . . . , µJ,k]

⊤ ∈ RJ , J being
the number of pixels or voxels, at each energy Ek. The system
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Fig. 1: Schematic representation of our generative model with K = 3
energies.

comprises I detectors and the expected number of X-ray photons of
energy Ek recorded at detector i = 1, . . . , I , denoted yi,k, is defined
by the Beer-Lambert law as

ȳi,k(µk) = Ik · exp (−[Aµk]i) + ri,k

where Ik denotes the mean photons flux at the k-th energy bin,
A ∈ RI×J is a system matrix modeling line integrals along each
beam and ri,k > 0 is a known background term. The actual number
of detected photons is a Poisson random variable yi,k

yi,k ∼ Poisson (ȳi,k(µk)) . (1)

For each energy bin k, the number of detected photons are stored in
a vector yk = [y1,k, . . . , yI,k]

⊤ ∈ RI .
Synergistic MBIR of the collection of images {µk} consists in

iteratively solving the optimization problem

min
{µk}

K∑
k=1

Lk(µk) + βR(µ1, . . . ,µK) , (2)

where Lk(µk) is a data fidelity term that evaluates the fit between the
image µk and the measurement yk, R(µ1, . . . ,µK) is a synergistic
penalty term that enforces individual and joint properties on the images
and β > 0 is weight. In this work, Lk(µk) is a weighted least-squares
(WLS) data fit term that approximates the negative log-likelihood
defined as [1]

Lk(µk) =

I∑
i=1

1

2
wi,k([Aµk]i − bi,k)

2 (3)

where wi,k =
(yi,k−ri,k)

2

yi,k
when yi,k > ri,k and wi,k = 0 if yi,k ≤

ri,k, and bi,k = log
(

Ik
yi,k−ri,k

)
. The minimization problem (2) is

therefore a penalized weighted least-squares (PWLS) problem. The
penalty term R(µ1, . . . ,µK) is designed to promote piecewise image
smoothness as well consistency between the images, for example by
enforcing joint sparsity of the gradient [2] or structural similarities
[3], or using multichannel dictionary learning [4].

In this work we present a novel synergistic penalty term that
connects the energies through CNNs. Let {fk}, fk : RJ → RJ , be a
collection of CNNs trained to map an attenuation image at energy
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E1 to the same image but at energy Ek. We assume f1 = IdRJ . We
define our penalty term as

RCNN(µ1, . . . ,µK) = min
z∈RJ

K∑
k=1

1

2
γk∥fk(z)−µk∥22+αH(z) (4)

where z = [z1, . . . , zJ ]
⊤ ∈ RJ is a reference image, γk, α > 0

are weights—typically
∑

k γk = 1 with γk ∝ ∥yk∥1 to minimize
the variance of z—and H(z) is an image smoothness penalty term
defined as

H(z) =

J∑
j=1

∑
ℓ∈Nj

ωj,ℓψ(zj − zℓ)

where Nj is a neighborhood of j, ωj,ℓ = 1/dist(j, ℓ) and ψ : R → R+

is a potential function. In this work we used the Huber potential [5].
To summarize, R(µ1, . . . ,µK) is small if (i) each image µk is

close to fk(z) for some latent image z and (ii) the latent image
z is piecewise smooth. By doing so, the latent image z “connects”
the µks together such that each µk is reconstructed using the entire
measurement data at each energy, thus reducing the variance. The
proposed generative model is summarized in Fig. 1.

This approach is a generalization of multichannel dictionary learning
[4] where {fk} play the role of the multichannel dictionary and z
plays the role of the sparse code.

Solving (2) is achieved through an iterative algorithm that alter-
nates between minimization in {µk} and minimization in z. We
used a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm [6] for the minimization in z, and separable paraboloidal
surrogates (SPSs) [1] for the minimization in {µk}.

We compared our method with synergistic reconstruction using a
JTV penalty, i.e., by solving (2) with the penalty

RJTV(µ1, . . . ,µK) =

J∑
j=1

∑
ℓ∈Nj

ωj,ℓ

√√√√ K∑
k=1

(µj,k − µj,ℓ)2 .

The minimization was performed with a primal-dual algorithm [7].

III. EXPERIMENTS AND RESULTS

We generated low-dose multi-energy CT data {yk} following (1)
using K = 6 ground truth (GT) images µ⋆

k at different energies
(from E1 = 40 keV to E6 = 140 keV) obtained by the Philips IQon
Spectral CT scanner from the Poitiers University Hospital. We used
a standard projector to model the system matrix A and its transpose.
The CNNs {fk} consist of U-Net architectures trained on a separate
dataset of 100 multi-energy images obtained on the same scanner. The
models were built and trained using Tensorflow in Python. The models
were trained using NVIDIA GeForce GTX 1660 Ti (6 GB memory)
with batch size of 10. We reconstructed the images by solving (2)
using R = RJTV and R = RCNN with a range of values for β, as
well as with R = 0 (no penalty). The parameter α, cf. (4), was set
manually.

Fig. 2 shows the reconstructed images at 40, 60 and 80 keV with
optimal β according to the peak signal-to-noise ratio (PSNR) (see
below). We observe that the reconstructed images using R = RCNN

are less noisy and less blurry than the images reconstructed using
R = RJTV.

Fig. 3 shows the PSNR values for reconstructed 40 keV images
using R = RJTV and R = RCNN for a range of values for β. We
observe that RCNN outperforms RJTV for all β.
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Fig. 2: GT and reconstructed images at E1 = 40, E2 = 60 and
E3 = 80 keV.
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Fig. 3: PSNR values of the reconstructed 40 keV images using R =
RJTV and R = RCNN versus β (normalized by βmax).

IV. DISCUSSION AND CONCLUSION

We proposed a novel penalty for PWLS synergistic multi-energy
CT reconstruction. The penalty “connects the energies” using CNNs.
Our method may also be applicable for other modalities such as multi-
parametric magnetic resonance imaging (MRI). We demonstrated
that our penalty outperforms JTV in terms of PSNR. Additional
improvements can be foreseen by optimally tuning α and using
a different H penalty in (4) such as total variation (TV). Further
work includes bias/variance quantitative analysis from multiple noise
replicates.
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