A survey of sound source localization with deep learning methods - Archive ouverte HAL
Article Dans Une Revue Journal of the Acoustical Society of America Année : 2022

A survey of sound source localization with deep learning methods

Résumé

This article is a survey of deep learning methods for single and multiple sound source localization, with a focus on sound source localization in indoor environments, where reverberation and diffuse noise are present. We provide an extensive topography of the neural network-based sound source localization literature in this context, organized according to the neural network architecture, the type of input features, the output strategy (classification or regression), the types of data used for model training and evaluation, and the model training strategy. Tables summarizing the literature survey are provided at the end of the paper, allowing a quick search of methods with a given set of target characteristics.
Fichier principal
Vignette du fichier
Grumiaux_et_al_JASA_2022_SSL.pdf (4.8 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03952034 , version 1 (31-01-2023)

Identifiants

Citer

Pierre-Amaury Grumiaux, Srđan Kitić, Laurent Girin, Alexandre Guérin. A survey of sound source localization with deep learning methods. Journal of the Acoustical Society of America, 2022, 152 (1), pp.107-151. ⟨10.1121/10.0011809⟩. ⟨hal-03952034⟩
108 Consultations
196 Téléchargements

Altmetric

Partager

More