Well-posedness and propagation of chaos for Lévy-driven McKean-Vlasov SDEs under Lipschitz assumptions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Well-posedness and propagation of chaos for Lévy-driven McKean-Vlasov SDEs under Lipschitz assumptions

Résumé

The first goal of this note is to prove the strong well-posedness of McKean-Vlasov SDEs driven by Lévy processes on $\mathbb{R}^d$ having a finite moment of order $\beta \in [1,2]$ and under standard Lipschitz assumptions on the coefficients. Then, we prove a quantitative propagation of chaos result at the level of paths for the associated interacting particle system, with constant diffusion coefficient. Finally, we improve the rates of convergence obtained for a particular mean-field system of interacting stable-driven Ornstein-Uhlenbeck processes.
Fichier principal
Vignette du fichier
WP_Levy_McKV.pdf (241.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03947979 , version 1 (19-01-2023)

Identifiants

Citer

Thomas Cavallazzi. Well-posedness and propagation of chaos for Lévy-driven McKean-Vlasov SDEs under Lipschitz assumptions. 2023. ⟨hal-03947979⟩
190 Consultations
134 Téléchargements

Altmetric

Partager

More