Longitudinal data collection to follow social network and language development dynamics at preschool - Archive ouverte HAL
Article Dans Une Revue Scientific Data Année : 2022

Longitudinal data collection to follow social network and language development dynamics at preschool

Résumé

DyLNet is a large-scale longitudinal social experiment designed to observe the relations between child socialisation and oral language learning at preschool. During three years, a complete preschool in France was followed to record proximity interactions of about 200 children and adults every 5 seconds using autonomous Radio Frequency Identification Wireless Proximity Sensors. Data was collected monthly with one week-long deployments. In parallel, survey campaigns were carried out to record the socio-demographic and language background of children and their families, and to monitor the linguistic skills of the pupils at regular intervals. From data we inferred real social interactions and distinguished inter- and intra-class interactions in different settings. We share ten weeks of cleaned, pre-processed and reconstructed interaction data recorded over a complete school year, together with two sets of survey data providing details about the pupils’ socio-demographic profile and language development level at the beginning and end of this period. Our dataset may stimulate researchers from several fields to study the simultaneous development of language and social interactions of children.
Fichier principal
Vignette du fichier
Dai et al. (2022, Nature Scientific Data).pdf (2.95 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03933702 , version 1 (10-01-2023)

Identifiants

Citer

Sicheng Dai, Hélène Bouchet, Márton Karsai, Jean-Pierre Chevrot, Eric Fleury, et al.. Longitudinal data collection to follow social network and language development dynamics at preschool. Scientific Data , 2022, 9 (1), pp.777. ⟨10.1038/s41597-022-01756-x⟩. ⟨hal-03933702⟩
67 Consultations
43 Téléchargements

Altmetric

Partager

More