Planar Magnetic Paul Traps for Ferromagnetic Particles
Résumé
We present a study on the trapping of hard ferromagnetic particles using alternating magnetic fields, with a focus on planar trap geometries. First, we realize and characterize a magnetic Paul trap design for millimeter-size magnets based on a rotating magnetic potential. Employing a physically rotating platform with two pairs of permanent magnets with opposite poles, we show stable trapping of hard ferromagnets a centimeter above the trap and demonstrate that the particle shape plays a critical role in the trapping. Finally, we propose a chip trap design that will open a path to studies of gyromagnetic effects with ferromagnetic micro-particles.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |