A lightweight approach for origin-destination matrix anonymization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

A lightweight approach for origin-destination matrix anonymization

Résumé

Personal trajectory data are becoming more and more accessible and have a high value in transport planning and mobility characterisation, at the cost of a risk for user's privacy. Addressing this risk is usually computationally expensive and can lead to losing most of the data utility. We explore a new, light-weight approach to Origin/Destination-matrix anonymization that is easily scalable. We apply it to trip records from New York City Taxi and Limousine Commission (TLC) to illustrate how it can combine foolproof anonymity with a good spatial precision for a reasonable computational cost.

Domaines

Autre
Fichier principal
Vignette du fichier
doc00035535.pdf (1.51 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03922211 , version 1 (11-09-2023)

Identifiants

Citer

Benoît Matet, Etienne Come, Furno Angelo, Loïc Bonnetain, Latifa Oukhellou, et al.. A lightweight approach for origin-destination matrix anonymization. ESANN 2021, The 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Oct 2021, Bruges, Belgium. pp 487-492, ⟨10.14428/esann/2021.ES2021-56⟩. ⟨hal-03922211⟩
23 Consultations
17 Téléchargements

Altmetric

Partager

More