Values of E-functions are not Liouville numbers - Archive ouverte HAL
Article Dans Une Revue Journal de l'École polytechnique — Mathématiques Année : 2023

Values of E-functions are not Liouville numbers

Stéphane Fischler
  • Fonction : Auteur
  • PersonId : 1121072
Tanguy Rivoal

Résumé

Shidlovskii has given a linear independence measure of values of $E$-functions with rational Taylor coefficients at a rational point, not a singularity of the underlying differential system satisfied by these $E$-functions. Recently, Beukers has proved a qualitative linear independence theorem for the values at an algebraic point of $E$-functions with arbitrary algebraic Taylor coefficients. In this paper, we obtain an analogue of Shidlovskii's measure for values of arbitrary $E$-functions at algebraic points. This enables us to solve a long standing problem by proving that the value of an $E$-function at an algebraic point is never a Liouville number. We also prove that values at rational points of $E$-functions with rational Taylor coefficients are linearly independent over $\overline{\mathbb{Q}}$ if and only if they are linearly independent over $\mathbb{Q}$. Our methods rest upon improvements of results obtained by Andr\'e and Beukers in the theory of $E$-operators.
Fichier principal
Vignette du fichier
liouvilleJEP.pdf (318.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03920532 , version 1 (03-01-2023)
hal-03920532 , version 2 (24-01-2023)
hal-03920532 , version 3 (06-12-2023)

Identifiants

Citer

Stéphane Fischler, Tanguy Rivoal. Values of E-functions are not Liouville numbers. Journal de l'École polytechnique — Mathématiques, 2023, 11, pp.1-18. ⟨10.5802/jep.249⟩. ⟨hal-03920532v3⟩
135 Consultations
58 Téléchargements

Altmetric

Partager

More