Gradient-based Adaptive Importance Samplers - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2022

Gradient-based Adaptive Importance Samplers

Résumé

Importance sampling (IS) is a powerful Monte Carlo methodology for the approximation of intractable integrals, very often involving a target probability density function. The performance of IS heavily depends on the appropriate selection of the proposal distributions where the samples are simulated from. In this paper, we propose an adaptive importance sampler, called GRAMIS, that iteratively improves the set of proposals. The algorithm exploits geometric information of the target to adapt the location and scale parameters of those proposals. Moreover, in order to allow for a cooperative adaptation, a repulsion term is introduced that favors a coordinated exploration of the state space. This translates into a more diverse exploration and a better approximation of the target via the mixture of proposals. Moreover, we provide a theoretical justification of the repulsion term. We show the good performance of GRAMIS in two problems where the target has a challenging shape and cannot be easily approximated by a standard uni-modal proposal.
Fichier principal
Vignette du fichier
2210.10785.pdf (1.37 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03920127 , version 1 (03-01-2023)

Identifiants

  • HAL Id : hal-03920127 , version 1

Citer

Víctor Elvira, Emilie Chouzenoux, Ömer Deniz Akyildiz, Luca Martino. Gradient-based Adaptive Importance Samplers. Inria Saclay - Île de France. 2022. ⟨hal-03920127⟩
34 Consultations
54 Téléchargements

Partager

More