A density version of Cobham's theorem - Archive ouverte HAL
Article Dans Une Revue Acta Arithmetica Année : 2020

A density version of Cobham's theorem

Résumé

Cobham's theorem asserts that if a sequence is automatic with respect to two multiplicatively independent bases, then it is ultimately periodic. We prove a stronger density version of the result: if two sequences which are automatic with respect to two multiplicatively independent bases coincide on a set of density one, then they also coincide on a set of density one with a periodic sequence. We apply the result to a problem of Deshouillers and Ruzsa concerning the least nonzero digit of n! in base 12.
Fichier principal
Vignette du fichier
main-2017-11-01-17-15.pdf (310.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03919559 , version 1 (03-01-2023)

Identifiants

Citer

Jakub Byszewski, Jakub Konieczny. A density version of Cobham's theorem. Acta Arithmetica, 2020, 192 (3), pp.235-247. ⟨10.4064/aa180626-13-1⟩. ⟨hal-03919559⟩
9 Consultations
18 Téléchargements

Altmetric

Partager

More