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A DENSITY VERSION OF COBHAM’S THEOREM

JAKUB BYSZEWSKI2 AND JAKUB KONIECZNY1,2

Abstract. Cobham’s theorem asserts that if a sequence is automatic with

respect to two multiplicatively independent bases, then it is ultimately peri-

odic. We prove a stronger density version of the result: if two sequences which
are automatic with respect to two multiplicatively independent bases coincide

on a set of density one, then they also coincide on a set of density one with a

periodic sequence. We apply the result to a problem of Deshouillers and Ruzsa
concerning the least nonzero digit of n! in base 12.

1. Introduction

A k-automatic sequence is a sequence whose n-th term is produced from the
digits of n in base k using a finite procedure (more precisely, a deterministic finite
automaton with output). The celebrated theorem of Cobham [Cob69] states that a
sequence a cannot be simultaneously automatic with respect to two different bases
k and l, except for the trivial cases when k and l are both powers of the same
integer (in which case the notions of k- and l-automatic sequence coincide) or when
a is ultimately periodic (in which case it is automatic with respect to any base).
The main aim of this paper is to weaken the hypothesis of Cobham’s theorem by
assuming that a sequence is k- and l-automatic almost everywhere.

Let k and l denote integers greater or equal than 2. We say that k and l are
multiplicatively independent if they are not both powers of the same integer; equiv-
alently, log k/ log l ∈ R \Q. For a set of integers A ⊂ N0, the upper density of A is
given by the formula

d̄(A) = lim sup
n→∞

|A ∩ [0, n)|
n

.

We say that two sequences a and b coincide almost everywhere (respectively, ulti-
mately) if the set of n for which a(n) 6= b(n) has upper density zero (respectively, is
finite). A sequence is periodic almost everywhere if it coincides almost everywhere
with some periodic sequence. We define ultimately periodic sequences analogously.

Motivated by results in [DR11a, Des12], Deshouillers asked if a version of Cob-
ham’s theorem holds for almost everywhere automatic sequences; see [All15, Sec.
3.5] for details. Stated in a slightly different language, our main result answers this
question in the positive.
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Main Theorem. Let k, l ≥ 2 be multiplicatively independent integers. Let a be
a k-automatic sequence and let b be an l-automatic sequence. If a and b coincide
almost everywhere, then they are both periodic almost everywhere.

Cobham’s theorem has sparked a lot subsequent research.
A multidimensional version of Cobham’s theorem was proved by Semenov [Sem77],

with alternative proofs by Durand in the language of symbolic dynamics [Dur08]
and Michaux and Villemaire in the language of logic [MV96]. Analogous results
for other numeration systems are obtained also in [Fab94, PB97, Dur98b, Han98,
Bès00, DR09]. For related results, see also [Bès97]. Culminating a series of pa-
pers including [Fab94, Dur98a, Dur02b], Durand [Dur11] proved an analogue of
Cobham’s theorem for morphic sequences. This problem is closely related to the
variant for different numeration systems.

An analogue for fractals was obtained by Adamczewski and Bell [AB11], with
a later generalisation by Chan and Hare [CH14]. This point of view has been
further extended by Charlier, Leroy, and Rigo [CLR15]. An analogue for quasi-
automatic sequences (with applications to function fields in positive characteristic)
was obtained by Adamczewski and Bell [AB08]. An analogue for regular sequences
was obtained by Bell [Bel07]. This work was further extended by Adamczewski and
Bell to the case of Mahler series [AB13], and another proof was recently given by
Schäfke and Singer [SS17]. An analogue for real numbers was obtained by Boigelot
and Brusten [BB09], see also [BBL09, BBB10]. Related results for Gaussian integers
were obtained by Hansel and Safer [HS03] and Bosma, Fokkink, and Krebs [BFK17].

Considerable effort has also gone into simplifying the proof of Cobham’s the-
orem. Michaux and Villemaire [MV93] give a proof of Cobham’s theorem using
the language of logic. The original proof of Cobham has been simplified by Hansel
[Han82] (see also [Reu84]). A presentation of the proof is given in [Per90] and
[AS03], and should be read together with [RW06] which fills a gap in the proof no-
ticed by Kärki [Kär05] and Rigo and Waxweiler. A recent presentation of the proof
was also given by Shallit [Sha17]. For an extended discussion of various variants of
Cobham’s theorem, we refer to the survey papers [BHMV94, Dur02a, DR11b].

We briefly describe the contents of the paper. In section 2, we introduce the basic
concepts and state a few preliminary lemmas concerning automata. In section 3,
we give a proof of the main result using combinatorial and automata-theoretic
methods. Note that our proof relies on the classical version of Cobham’s theorem.
In the following section, we apply the main result to a problem of Deshouillers–
Ruzsa concerning the least nonzero digit of the expansion of n! in base 12. Finally,
in a short appendix we give an alternative proof of the main result under the extra
assumption that both sequences are uniformly recurrent. In this case the result
follows immediately from a theorem of Fagnot, but we also show how it can be
derived from an arguably easier result of Allouche–Rampersad–Shallit which states
that the lexicographically minimal element in the dynamical system generated by
an automatic sequence is automatic.

Notation. We mainly use standard notation, with the possible exception of the
Iverson bracket. If ϕ is a sentence, then JϕK = 1 if ϕ is true, and JϕK = 0 if ϕ is
false.
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2. Preliminaries

Let Ω be a finite set. We denote the set of all finite words over Ω by Ω∗ and
the set of all (right)-infinite words over Ω by Ωω. We identify Ω-valued sequences
with elements of Ωω. A factor of an infinite word a ∈ Ωω is a finite word consisting
of a number of consecutive symbols of a. For a = a0a1a2 · · · ∈ Ωω and integers
0 ≤ i ≤ j, we write a[i,j) for the factor a[i,j) = aiai+1 · · · aj−1. The length of a
factor u is the number of symbols it contains and is denoted by |u|. The set of all
factors of a is called the language of a and is denoted by L(a). A prefix of a word
a is a factor of the form a[0,j) with j ≥ 0.

We endow the space Ωω with the product topology, using discrete topology on the
space Ω. Let σ : Ωω → Ωω be the shift map given by σ(a0a1a2 · · · ) = a1a2a3 · · · . For
a word a ∈ Ωω, the subshift Xa induced by a is the closure Xa = cl({σna | n ≥ 0})
of the orbit of a. It is easy to see that Xa consists exactly of the words b ∈ Ωω such
that each factor of b is a factor of a. A word a ∈ Ωω is called uniformly recurrent
if each factor w of a occurs in a with bounded gaps, i.e., if there exists a constant
C (depending on w) such that every factor of a of length at least C contains w as
its factor.

Let k ≥ 2 be an integer. We work with k-automata (more precisely, deterministic
finite k-automata with output) A = (S,Σk, δ, s0,Ω, τ), where S is the set of states,
Σk = {0, 1, . . . , k − 1} is the input alphabet, δ is the transition function, s0 is the
initial state, Ω is the output alphabet, and τ is the output map. All the automata
will read the input starting with the leading digit. For n ∈ N0, we denote by
(n)k ∈ Σ∗k the representation of n in base k without leading 0’s.

Let A = (S,Σk, δ, s0,Ω, τ) be a k-automaton. We say that a state s is accessible
if there exists a word v ∈ Σ∗k such that δ(s0, v) = s. Replacing S with the set of
accessible states if necessary, we can — and will — always assume that all states
are accessible in all automata we consider.

We say that A ignores the leading 0’s if δ(s0, 0) = s0. We say that A is idem-
potent if the action δ(·, 0) of 0 on the set of states is idempotent, meaning that for
each state s ∈ S we have δ(s, 00) = δ(s, 0).

A strongly connected component of a k-automaton A = (S,Σk, δ, s0,Ω, τ) is a
subset of states C ⊂ S such that δ(s, u) ∈ C for s ∈ C and u ∈ Σk and such that C
is strongly connected, i.e., for each s, s′ ∈ C there exists a word w ∈ Σ∗k such that
δ(s, w) = s′. For a state s, we denote by aA,s the k-automatic sequence induced by
the automaton (S,Σk, δ, s,Ω, τ).

We begin with a few easy lemmas.

Lemma 2.1. Let A = (S,Σk, δ, s0,Ω, τ) be a k-automaton. Then the set of n ∈ N0

such that δ(s0, (n)k) does not lie in a strongly connected component of A has upper
density 0.

Proof. It is easy to see that there exists a word w ∈ Σ∗k such that δ(s, w) lies in a
strongly connected component of A for all s ∈ S. Thus, in order that n not belong
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to a strongly connected component of A, it is necessary that (n)k not contain w as
a factor. The set of such integers has upper density 0. �

Lemma 2.2. Let a be a k-automatic sequence. Then there exists a power k′ of k
such that a is produced by an idempotent k′-automaton which ignores the leading
0’s.

Proof. It is easy to see that any k-automatic sequence is produced by an automa-
ton ignoring the leading 0’s. Let A = (S,Σk, δ, s0,Ω, τ) be such a k-automaton.

For t ∈ N, write each u ∈ Σkt in the form u =
∑t−1
i=0 uik

i with ui ∈ Σk. Since
A ignores the leading 0’s, the sequence a is produced by a kt-automaton At =
(S,Σkt , δ

(t), s0,Ω, τ), where the transition function δ(t) is given by δ(t)(s, u) =
δ(s, ut−1 · · ·u0). In particular, δ(t)(·, 0) is the t-fold composition of δ(·, 0). There-
fore for k′ = kt with t ≥ 1 divisible by all the integers ≤ |S|, the automaton At is
idempotent and ignores the leading 0’s. �

Lemma 2.3. Let a : N0 → Ω be a k-automatic sequence produced by an idempotent
automaton A = (S, s0,Σk, δ,Ω, τ) which ignores the leading 0’s. Let Xa be the
subshift generated by a and let x ∈ Ω. We identify x with the constant word xω ∈
Ωω. Then the following conditions are equivalent:

(i) The point x belongs to Xa.
(ii) There exists a strongly connected component C of A such that τ(s) = x

for all s ∈ C.

Proof. Let us first assume that x ∈ Xa. It is easy to see that there exists a word
w ∈ Σ∗k such that δ(s, w) lies in a strongly connected component of A for all states
s ∈ S. We may further assume that w has no leading 0’s. For two states s, s′ in
the same strongly connected component of A there exists a word vs,s′ ∈ Σ∗k such
that δ(s, vs,s′) = s′. Let t ≥ 0 be such that all the words vs,s′ have length ≤ t.

Since x belongs to Xa, there are factors of a consisting of arbitrarily long se-
quences of the symbol x. Thus, there exists a word u ∈ Σ∗k with no leading 0
such that δ(s0, uw0v) = x for all v ∈ Σtk. By the construction of w, the state
s = δ(s0, uw0) lies in some strongly connected component C of A. For any s′ ∈ C,
we have a word vs,s′ ∈ Σik with i ≤ t and δ(s, vs,s′) = s′. It follows (using the fact
that A is idempotent) that

τ(s′) = τ(δ(s, vs,s′)) = τ(δ(s0, uw0t−i+1vs,s′)) = x.

Now assume that there exists a strongly connected component C of A such that
τ(s) = x for all s ∈ C. Since A ignores the leading 0’s and since every state is
accessible, there exists a word w ∈ Σ∗k such that δ(s0, w) ∈ C. Let m be an integer
such that (m)k = w. By the assumption on C, we have a(mkt + i) = x for t ≥ 0
and 0 ≤ i < kt, and hence xω lies in Xa. �

Remark. The assumption of idempotence is essential in the above lemma. Indeed,
for the sequence a(n) = |(n)k| mod 2 that describes the parity of the number of
digits of n in base k, the subshift Xa contains both the constant word 1ω and the
constant word 0ω, but a is produced by a k-automaton A which ignores the leading
0’s and has precisely one strongly connected component.
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3. Proof of the Main Theorem

This section is devoted to the proof of the main result. The first step towards
this goal is the following lemma.

Lemma 3.1. Let k, l ≥ 2 be multiplicatively independent integers. Let a be a
k-automatic sequence produced by a k-automaton A and let b be an l-automatic
sequence produced by an l-automaton B. Assume that A and B are idempotent and
ignore the leading 0’s. Let C be a strongly connected component of A and let D be
a strongly connected component of B.

Then, there exist states s ∈ C and r ∈ D such that the automatic sequences

ã = aA,s and b̃ = aB,r satisfy the following property: For any integer m the set

Zm = {n ∈ N0 | a[n,n+m) = ã[0,m) and b[n,n+m) = b̃[0,m)}

has positive upper density.
Assume further that the sequences a and b agree almost everywhere. Then the

sequences ã and b̃ constructed above are equal.

Proof. Write A = (S,Σk, δ, s0,Ω, τ) and B = (S′,Σk, δ
′, s′0,Ω

′, τ ′). Pick some u ∈
Σ∗k, v ∈ Σ∗l such that δ(s0, u) ∈ C and δ′(s′0, v) ∈ D; we may additionally assume
that u and v begin with nonzero digits. For any t ≥ 0, we consider the sets

A(t) = {n ∈ N0 | (n)k = ux0t+1, (n)l = vy0t+1 for some x ∈ Σ∗k, y ∈ Σ∗l }.

The interest in these sets stems from the observation that for m < min(kt, lt) and
n ∈ A(t) we have the equalities

a(n+m) = τ(δ(δ(s0, (n)k), (m)k)), b(n+m) = τ ′(δ′(δ′(s′0, (n)l), (m)l)),

and moreover δ(s0, (n)k) ∈ C and δ′(s′0, (n)l) ∈ D. (Here, we use the fact that the
automata are idempotent.) We may further split A(t) into a union of disjoint pieces

A(t)
s,r = {n ∈ A(t) | δ(s0, (n)k) = s, δ′(s′0, (n)l) = r}

for s ∈ C, r ∈ D.
We claim that the sets A(t) have positive upper density. First, note that there

exist arbitrarily large integers N such that

(N)k = u0x0t+1 and (N)l = v0y0t+1

for some x ∈ Σ∗k and y ∈ Σ∗l . Indeed, since k and l are multiplicatively independent,
the set {ki/lj | i, j ∈ N0} is dense in the positive reals, and hence there exist
arbitrarily large integers i and j such that the numbers N = kilj are of this form.
(Pick i ≥ t+ 1 such that (ki)l = v0y′ and j ≥ t+ 1 such that (lj)k = u0x′ for some
x′ ∈ Σ∗k, y

′ ∈ Σ∗l .) There exists a constant ε > 0, independent of the choice of N ,

such that for any N as above and for any 0 ≤ m < εN we have N+mkt+1lt+1 ∈ A(t)

(we may take ε = 1/k|u|+t+2l|v|+t+2). Counting the number of choices of m, we
conclude that

d̄(A(t)) ≥ ε/(1 + εkt+1lt+1) > 0.

Since the upper density is subadditive, for each t ≥ 0 there exist s ∈ C and

r ∈ D such that d̄(A
(t)
s,r) > 0. Since A

(t+1)
s,r ⊂ A

(t)
s,r, we may find s ∈ C and r ∈ D

such that d̄(A
(t)
s,r) > 0 for all t ≥ 0.
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Fix such a choice of s and r, and let the sequences ã(m) = aA,s(m) = τ(δ(s, (m)k))

and b̃(m) = aB,r = τ ′(δ′(r, (m)l)) be defined as above. Put M(t) = min(kt, lt). By

construction of the sets A
(t)
s,r, for n ∈ A(t)

s,r and 0 ≤ m < M(t) we have

a(n+m) = ã(m), b(n+m) = b̃(m).

This proves that A
(t)
s,r ⊂ ZM(t), and hence ZM(t) has positive density. Since the

sequence of sets Zm is descending, letting t → ∞ concludes the proof of the first
part of the claim.

In order to prove the remaining part of the statement, suppose that ã(m) 6= b̃(m)

for some m ≥ 0. Fix an integer t ≥ 0 with m < M(t) and note that for n ∈ A(t)
s,r

we have

a(n+m) = ã(m) 6= b̃(m) = b(n+m).

Since A
(t)
s,r has positive density, we reach a contradiction with the assumption that

a and b are equal almost everywhere. �

We are now ready to prove our main result.

Proof of the Main Theorem. Let k, l ≥ 2 be multiplicatively independent integers.
Let a be a k-automatic sequence and let b be an l-automatic sequence that coincide
almost everywhere.

By Lemma 2.2, after replacing k and l by their appropriate powers, there exist
automata A and B that are idempotent, ignore the leading 0’s, and produce the
sequences a and b, respectively. Applying Lemma 3.1 to A and B, we obtain the

sequence ã = b̃ (see Lemma 3.1 for notation). Since the sequence ã = b̃ is both
k- and l-automatic, the classical version of Cobham’s theorem shows that it is
ultimately periodic.

Let c be a periodic sequence such that ã = b̃ and c ultimately coincide and let q
be the period of c. Ignoring the first finitely many terms where ã(m) 6= c(m) and
splitting the set Zm into finitely many pieces, we conclude that the set

Z(i)
m = {n ∈ N0 | a[n,n+m) = c[0,m) and n ≡ i mod q}

is infinite for some 0 ≤ i ≤ q − 1 and all m ∈ N0. Thus, after possibly replacing
the periodic sequence c by its shift c̃, we see that a and c̃ have arbitrarily long
common factors. Let a′ and b′ be sequences given by a′(n) = Ja(n) = c̃(n)K and
b′(n) = Jb(n) = c̃(n)K, where we are using the Iverson bracket notation.

By construction, the sequences a′ and b′ take only the values 0 and 1, a′ is
k-automatic and b′ is l-automatic. It is also clear that a′ and b′ coincide almost
everywhere. Moreover, since Z

(i)
m is infinite, the constant word 1ω belongs to the

subshift Xa′ generated by a′. Applying Lemma 2.2 again, we obtain automata A′
and B′ that are idempotent, ignore the leading 0’s and produce the sequences a′

and b′, respectively.
By Lemma 2.3, A′ has a strongly connected component where the output func-

tion takes the constant value 1. Applying Lemma 3.1 to all strongly connected
components of A′ and B′, we conclude that in both of these automata, the output
function takes the value 1 on every state in any strongly connected component.
Thus, by Lemma 2.1 the sequences a′ and b′ are equal to 1 almost everywhere, and
hence a = c̃ = b almost everywhere. �
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4. An application

In [DR11a, Des12, Des16], Deshouillers and Ruzsa studied the sequence t12(n!) of
least nonzero digits of n! in base 12. More generally, one can consider the sequence
tk(n!) of least nonzero digits of n! in base k for any k ≥ 2 (see [Kak67, Dek80,
Dre08]).

If k is a prime power, then Deshouillers [Des12] notes that tk(n!) is k-automatic.
More generally, if k is written in the form

k = pα1
1 pα2

2 pα3
3 . . . ,

where pi are distinct primes arranged so that

α1(p1 − 1) ≥ α2(p2 − 1) ≥ α3(p3 − 1) ≥ . . . ,
then tk(n!) is p1-automatic under the weaker assumption that the first inequality
above is strict: α1(p1 − 1) > α2(p2 − 1). In particular, the sequence t10(n!) is
5-automatic. (This last conclusion was first proved in [Kak67].)

The base k = 12 is the first instance when the strict inequality α1(p1 − 1) >
α2(p2 − 1) does not hold. Hence, it is natural to ask if t12(n!) is automatic, and
more precisely if the sequences Jt12(n!) = yK are automatic for 0 ≤ y < 12. Partial
progress towards this goal has been made by Deshouillers and Ruzsa. In [DR11a],
it is shown that t12(n!) coincides almost everywhere with a 3-automatic sequence
which takes only the values 4 and 8. On the other hand, as shown in [Des12], t12(n!)
takes each of the values 3, 6, 9 infinitely often. Moreover, the same author [Des16]
proved that the sequence Jt12(n!) = yK is not automatic for y = 3, 6, 9, and is not
3-automatic for y = 4, 8. It is natural to ask whether for y = 4, 8, the sequence
Jt12(n!) = yK might be automatic in a different base. Using the density version of
Cobham’s theorem, we are able to answer this question.

Corollary 4.1. For any y ∈ {3, 4, 6, 8, 9}, the sequence Jt12(n!) = yK is not auto-
matic.

Proof. The cases where y ∈ {3, 6, 9} have already been treated in [Des16, Theorem
1]. Thus, let y ∈ {4, 8}, and suppose for the sake of contradiction that the sequence
a(n) is k-automatic for some k ≥ 2. By [DR11a], there exists a 3-automatic se-
quence b(n) such that a(n) = b(n) almost everywhere. Moreover, it follows from
the construction in [DR11a] (see also [Des16, Proposition 1]) that the value of b(n)
depends only on the parity of the number of digits of (n)9 in {2, 3, 4, 6, 7}; b(n) = 4
if the digits 2, 3, 4, 6, 7 appear among the base-9 digits of n in total an even number
of times, and b(n) = 8 otherwise. In particular, b(n) is not almost everywhere
periodic. Thus the Main Theorem implies that k is a power of 3, and hence a(n) is
3-automatic. However, this possibility has been already ruled out by Deshouillers
[Des16, Theorem 1]. �

Appendix A. Uniformly recurrent sequences

In the case when the sequences a and b are uniformly recurrent, the proof of the
Main Theorem is particularly simple, and arguably more elegant. Indeed, it is a
consequence of a different variant of Cobham’s theorem, due to Fagnot.

Theorem A.1 (Fagnot). Let k, l ≥ 2 be multiplicatively independent integers. Let
a be a k-automatic sequence and let b be an l-automatic sequence. Suppose that
L(a) = L(b). Then a and b are ultimately periodic.
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Proof. [Fag97, Théorème 15]. �

Proposition A.2. Let k, l ≥ 2 be multiplicatively independent integers. Let a be
a k-automatic sequence and let b be an l-automatic sequence. Suppose that a and
b coincide almost everywhere and are both uniformly recurrent. Then a and b are
equal and periodic.

Proof. Note that L(a) = L(b); indeed, it follows from uniform recurrence that each
factor appears in a with positive frequency, and it follows from the fact that a
and b coincide almost everywhere that each factor that appears in a with positive
frequency is also a factor of b. Hence, L(a) ⊂ L(b). By symmetry, we obtain the
opposite inclusion.

It follows from Theorem A.1 that a and b are ultimately periodic. Since a
uniformly recurrent ultimately periodic sequence is periodic, and since two periodic
sequences that agree almost everywhere are equal, we conclude that a = b, and that
this common sequence is indeed periodic. �

Note that in the above proof we do not need the full strength of Theorem A.1.
Indeed, the following weaker version suffices.

Proposition A.3. Let k, l ≥ 2 be multiplicatively independent integers. Let a
be a k-automatic sequence and let b be an l-automatic sequence. Suppose that
L(a) = L(b), and a and b are uniformly recurrent. Then a and b are periodic.

We give an independent proof of Proposition A.3. For this purpose, we need
some preliminaries. Assume that Ω is further equipped with a total order < and
let a ∈ Ωω be an infinite word. Consider the element min(a) ∈ Ωω characterised
by the property that for each n ≥ 0 the n-th prefix min(a)[0,n) of min(a) is the
lexicographically least factor of a of length n. It is easy to see that the word min(a)
is the smallest element of the closed orbit Xa of a with respect to the lexicographic
ordering on Ωω. We will use the following result.

Theorem A.4 (Allouche–Rampersad–Shallit). Let Ω be a finite ordered set, and
let a : N0 → Ω be a k-automatic sequence. Then min(a) is k-automatic.

Proof. [ARS09, Theorem 6]. �

Proof of Proposition A.3. By an argument similar to the one in the proof of Propo-
sition A.2, one can show that L(a) = L(min(a)) and analogously L(b) = L(min(b)).
Indeed, the inclusion L(min(a)) ⊂ L(a) is obvious. For the opposite inclusion, note
that by uniform recurrence for each n ≥ 0 there exists m ≥ 0 such that each factor
of a of length ≤ n appears in each factor of a of length ≥ m.

By construction, min(a) is determined by L(a) and min(b) is determined by
L(b). Thus, L(a) = L(b) implies that min(a) = min(b); denote this sequence by
c. By Theorem A.4, c is both k- and l-automatic. Hence, by the classical version
of Cobham’s theorem, c is ultimately periodic. It follows that there is an integer
C such that for any n the number of factors of c of length n is at most C. Since
L(c) = L(a) = L(b), the same holds for a and b, and hence by a well-known result,
a and b are both ultimately periodic (see, e.g., [AS03, Theorem 10.2.6]). �
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[CLR15] Émilie Charlier, Julien Leroy, and Michel Rigo, An analogue of Cobham’s theorem for

graph directed iterated function systems, Adv. Math. 280 (2015), 86–120.
[Cob69] Alan Cobham, On the base-dependence of sets of numbers recognizable by finite au-

tomata, Math. Systems Theory 3 (1969), 186–192.

[Dek80] F. Michel Dekking, Regularity and irregularity of sequences generated by automata,
Seminar on Number Theory, 1979–1980 (French), Univ. Bordeaux I, Talence, 1980,

pp. Exp. No. 9, 10 pp.
[Des12] Jean-Marc Deshouillers, A footnote to the least non zero digit of n! in base 12, Unif.

Distrib. Theory 7 (2012), no. 1, 71–73.

[Des16] , Yet another footnote to the least non zero digit of n! in base 12, Unif. Distrib.
Theory 11 (2016), no. 2, 163–167.

[DR09] Fabien Durand and Michel Rigo, Syndeticity and independent substitutions, Adv. in

Appl. Math. 42 (2009), no. 1, 1–22.
[DR11a] Jean-Marc Deshouillers and Imre Z. Ruzsa, The least nonzero digit of n! in base 12,

Publ. Math. Debrecen 79 (2011), no. 3-4, 395–400.

[DR11b] Fabien Durand and Michel Rigo, On Cobham’s theorem, 2011, https://hal.archives-
ouvertes.fr/hal-00605375.

[Dre08] Gregory P. Dresden, Three transcendental numbers from the last non-zero digits of
nn, Fn, and n!, Math. Mag. 81 (2008), no. 2, 96–105.

[Dur98a] Fabien Durand, A generalization of Cobham’s theorem, Theory Comput. Syst. 31

(1998), no. 2, 169–185.
[Dur98b] , Sur les ensembles d’entiers reconnaissables, J. Théor. Nombres Bordeaux 10
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